Curcumin suppresses colorectal tumorigenesis through restoring the gut microbiota and metabolites.

BMC Cancer

Jiangxi Provincial Key Laboratory of Prevention and Treatment of Infectious Diseases, Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, P.R. China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Curcumin has been reported to have activity for prevention and therapy of CRC, yet its underlying mechanisms remain largely unknown. Recently, emerging evidence suggests that the gut microbiota and its metabolites contribute to the causation and progression of Colorectal cancer (CRC). In this study, we aimed to investigate if curcumin affects the tumorigenesis of CRC by modulating gut microbiota and its metabolites.

Methods: Forty male C57BL/6JGpt mice were randomly divided into four groups: negative control (NC), curcumin control, CRC model, and curcumin treatment (CRC-Cur) groups. CRC mouse model was induced by using azoxymethane (AOM) and dextran sodium sulfate (DSS), and the mice in CRC model and curcumin treatment groups received oral PBS or curcumin (150 mg/kg/day), respectively. Additionally, fecal samples were collected. 16 S rRNA sequencing and Liquid Chromatography Mass Spectrometry (LC-MS)-based untargeted metabolomics were used to observe the changes of intestinal flora and intestinal metabolites.

Results: Curcumin treatment restored colon length and structural morphology, and significantly inhibited tumor formation in AOM/DSS-induced CRC model mice. The 16S rRNA sequencing analysis indicated that the diversity and richness of core and total species of intestinal microflora in the CRC group were significantly lower than those in the NC group, which were substantially restored in the curcumin treatment group. Curcumin reduced harmful bacteria, including Ileibacterium, Monoglobus and Desulfovibrio, which were elevated in CRC model mice. Moreover, curcumin increased the abundance of Clostridia_UCG-014, Bifidobacterium and Lactobacillus, which were decreased in CRC model mice. In addition, 13 different metabolites were identified. Compared to the NC group, ethosuximide, xanthosine, and 17-beta-estradiol 3-sulfate-17-(beta-D-glucuronide) were elevated in the CRC model group, whereas curcumin treatment significantly reduced their levels. Conversely, glutamylleucine, gamma-Glutamylleucine, liquiritin, ubenimex, 5'-deoxy-5'-fluorouridine, 7,8-Dihydropteroic acid, neobyakangelicol, libenzapril, xenognosin A, and 7,4'-dihydroxy-8-methylflavan were decreased in the CRC group but notably upregulated by curcumin. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis revealed enrichment in seven pathways, including folate biosynthesis (P < 0.05).

Conclusions: The gut microecological balance was disrupted in AOM/DSS-induced CRC mice, accompanied by metabolite dysbiosis. Curcumin restored the equilibrium of the microbiota and regulated metabolites, highly indicating that curcumin may alleviate the development of AOM/DSS induced colorectal cancer in mice by regulating intestinal flora homeostasis and intestinal metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11395590PMC
http://dx.doi.org/10.1186/s12885-024-12898-zDOI Listing

Publication Analysis

Top Keywords

crc model
24
curcumin treatment
20
curcumin
13
gut microbiota
12
crc
12
model mice
12
microbiota metabolites
8
model curcumin
8
rrna sequencing
8
crc group
8

Similar Publications

Colorectal cancer (CRC) remains one of the most lethal malignancies globally, driven by complex molecular mechanisms that contribute to its progression and metastasis. This study focuses on the role of N1-methyladenosine (mA) RNA methylation in CRC, particularly its effect on Rab Interacting Lysosomal Protein-Like 1 (RILPL1) expression and the downstream activation of the CaMKII/CREB signaling pathway. Bioinformatics analysis identified RILPL1 as a key gene associated with poor CRC prognosis, exhibiting increased expression levels in cancerous tissues, with further elevation in metastatic samples.

View Article and Find Full Text PDF

Neuro-Immuno-Stromal Context in Colorectal Cancer: An Enteric Glial Cell-Driven Prognostic Model via Machine Learning Predicts Survival, Recurrence, and Therapy Response.

Exp Cell Res

September 2025

Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China. Electronic address:

Background: Enteric glial cells (EGCs) have been implicated in colorectal cancer (CRC) progression. This study aimed to develop and validate a prognostic model integrating EGC- and CRC-associated gene expression to predict patient survival, recurrence, metastasis, and therapy response.

Methods: Bulk and single-cell RNA sequencing data were analyzed, and a machine learning-based model was constructed using the RSF random forest algorithm.

View Article and Find Full Text PDF

A covalent inhibitor targeting Cys16 on RhoA in colorectal cancer.

Cell Chem Biol

September 2025

School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China; Centre for Oncology and Im

RhoA is a key cancer driver and potential colorectal cancer (CRC) therapy target but remains undrugged clinically. Using activity-based protein profiling (ABPP) and mass spectrometry (MS), we identified CL16, a covalent inhibitor targeting the unique Cys16 on RhoA subfamily, which confers high specificity over other Rho family proteins. Cys16 is adjacent to the nucleotide-binding pocket and switch regions, which are critical for RhoA function.

View Article and Find Full Text PDF

Background: Dysregulation of polyamine synthesis has been observed in various cancer cell types. A novel approach to depriving cancer cells of polyamines involves the use of difluoromethylornithine (DFMO) to block polyamine biosynthesis in combination with AMXT 1501, a potent inhibitor of polyamine transport. Preclinical mouse tumor models showed that the combination of AMXT 1501 plus DFMO had strong antitumor activity, together with evidence of a stimulated immune response against tumors.

View Article and Find Full Text PDF

Naturally conductive protein nanowires have inspired efforts to engineer electrical conductivity into synthetic fibrous proteins for the development of bioelectronic materials and devices. A comprehensive analysis of charge transport in these systems requires a combination of various measurement methods, instruments and electrode designs. Measurements under direct current (DC) typically focus on charge transport without distinguishing between charged species, requiring alternating current (AC) and electrochemical methods to probe additional phenomena.

View Article and Find Full Text PDF