98%
921
2 minutes
20
Hypochlorous acid (HClO) is widely used in everyday life for bleaching and disinfecting tap water, and also in human metabolism, where it plays an important role in destroying foreign bacterial invaders and pathogens as well as immune defense and cellular functioning maintenance. Abnormal levels of hypochlorous acid have the potential to cause joint inflammation, neuronal degeneration, and even life-threatening cancer. Specific identification and effective detection of hypochlorous acid are important for monitoring human health and the environment. In recent years, organic fluorescent probes have attracted much attention because of their simple synthesis, easy operation, high sensitivity, and high specificity, and a variety of hypochlorous acid fluorescent probes based on low-cost, easy-to-operate, and rapid identification have been developed. In this paper, we review the fluorescent probes that have been developed in the past five years for the specific recognition of hypochlorous acid based on different fluorophores, such as triphenylamine, coumarin, 1,8-naphthalize, etc., as well as recognition units, such as N-N dimethyl thiosemicarbazone, and describe how the probes and hypochlorous acid interact for identification in the same manner as other fluorescent probes. In addition, the reaction mechanism between the probe and hypochlorous acid, the fluorescence change of the probe, and the detection limit are described to illustrate the progress in the detection of hypochlorous acid in recent years and to provide ideas for the development of hypochlorous acid fluorescent probes in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10408347.2024.2399197 | DOI Listing |
While noninflammatory nodules after hyaluronic acid (HA) filler injection are a relatively common phenomenon, delayed-onset nodules (DONs) are relatively uncommon and a significant complication of HA filler treatment. DONs can be inflammatory, granulomatous, or infectious. Infectious nodules are a significant concern for aesthetic providers due to the development of biofilms, and understanding the pathophysiology, diagnosis, and management of DONs is essential for clinicians to minimize risks and optimize patient outcomes.
View Article and Find Full Text PDFFront Immunol
September 2025
Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria.
Background: This study investigated the role of UVB radiation and the influence of a simulated passive barrier on the enzymatic conversion of 25-hydroxyvitamin D3 (25(OH)D) by 1-alpha hydroxylase and its effects on the functional activity of tissue-resident macrophages.
Methods: Murine peritoneal tissue-resident macrophages (PRMφs) were exposed to three conditions: (1) Baseline (Control group), with no light exposure; (2) UVB+/RF- group, exposed to UVB rays without passive barrier simulation; (3) UVB+/RF+ group, UVB exposure with a thin layer of rat fur to mimic the passive barrier on the skin.
Results: UVB exposure did not significantly alter 25OHD levels across groups but led to a marked downregulation of 1-alpha hydroxylase, particularly with the simulated barrier.
Analyst
September 2025
College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China.
With the increasing emphasis on environmental safety, food inspection, and plant physiological functions, the development of high-performance fluorescent probes capable of highly sensitive, specific, rapid, and visual detection of target analytes has become a focal point in current research. Hemicyanine groups are widely utilized in the design of organic small-molecule fluorophores due to their low cost, structural stability, and ease of chemical modification. Through simple structural adjustments, the photoluminescent properties of hemicyanine-based fluorophores can be significantly enhanced, enabling strong signal output and maintaining stable fluorescence intensity across various solvents and pH conditions-features that make them particularly suitable for complex biological and chemical environments.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
School of Pharmacy, North China University of Science and Technology, Tangshan 063210, PR China. Electronic address:
Sulfite (HSO) and hypochlorous acid (HClO) serve as essential food additives and key raw materials in bleaching agents. However, excessive consumption of these compounds may disrupt cellular redox homeostasis, leading to a series of adverse physical effects. Therefore, the development of reliable analytical methods to detect HSO and HClO levels in food products is of significant importance.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2025
Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Lab
The simultaneous monitoring of hypochlorous acid (HClO) and pH dynamics is crucial for deciphering their synergistic roles in oxidative stress-related pathologies and environmental processes, yet remains technically challenging due to spectral interference and divergent response mechanisms in existing probes. Herein, we present RN-HP, a rationally engineered fluorescent probe capable of detecting HClO and pH through dual independent emission channels. RN-HP exhibited significantly enhanced fluorescence at 577 nm in the presence of HOCl, demonstrating good selectivity and high sensitivity (linear range: 0.
View Article and Find Full Text PDF