Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Investigation of carrier dynamics in CdSe/ZnS core-shell quantum dots (QDs) is performed using fluorescence-lifetime-correlation-spectroscopy (FLCS) and single-dot PL blinking studies. The origin of an emitted photon from a QD in an FLCS study is assigned to either an exciton state or trap state based on its excited state lifetime (). Subsequently, two intrastate autocorrelation functions (ACFs) representing the exciton and trap states and one cross-correlation function (CCF) coupling these two states are constructed. Interestingly, the timescales of carrier diffusion () show striking similarities across all three correlation functions, which further correlate with of the conventional FCS. However, ACFs notably deviate from the CCF in their μs progression patterns, with the latter showing growth, whereas the former ones display decay. This implies inter-state carrier diffusions leading to the QD blinking. Further study of single particle PL blinking on a surface-immobilized QD indicates shallow trap states near the band edge cause the blinking at low excitation power, while trion recombination becomes an additional contributing factor at higher pump power. Overall, the results highlight not only an excellent correlation between these two techniques but also the potential of our approach for achieving an accurate and comprehensive understanding of carrier dynamics in CdSe/ZnS QDs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4nr02221aDOI Listing

Publication Analysis

Top Keywords

carrier diffusion
8
cdse/zns core-shell
8
core-shell quantum
8
quantum dots
8
carrier dynamics
8
dynamics cdse/zns
8
trap states
8
evidence carrier
4
diffusion emission
4
states
4

Similar Publications

Why transport matters: an update on carrier proteins in Apicomplexan parasites.

Curr Opin Microbiol

September 2025

Cryptosporidiosis Laboratory, The Francis Crick Institute, London, United Kingdom. Electronic address:

The movement of molecules across the membranous barriers of a cell is fundamental to cellular homeostasis in every living organism. This vital process is facilitated through a mechanistically diverse class of proteins, collectively known as membrane transporters. Among these are so-called carrier proteins that can function in passive and active transport mechanisms.

View Article and Find Full Text PDF

Electric Field Influences on the Carrier Transport Characteristics of an Individual CsPbBr Microplate.

ACS Appl Mater Interfaces

September 2025

National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

For optoelectronic devices based on lead-halide perovskites and other semiconductors, a comprehensive understanding of the electric field influences on the carrier transport characteristics is critical to the optimization of their practical performances. To fulfill this challenging goal, here we have employed photoluminescence spatial image and transient absorption microscopy measurements on an individual CsPbBr microplate biased at external voltages in an Au/CsPbBr/Au device. At the subpicosecond time scale, some photogenerated excitons are dissociated into free electrons and holes that drift toward the electrodes to leave behind unfilled defect sites, which are capable of scattering the residual excitons to yield a reduced diffusion coefficient.

View Article and Find Full Text PDF

Chemo-/sonodynamic/photothermal triune therapy in 2D and 3D models of MCF-7 cells using paclitaxel-loaded gold nanoparticles.

J Therm Biol

September 2025

Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:

Objective: Breast cancer remains the most prevalent cancer among females globally, with an alarming rise in incidence. Conventional treatments like chemotherapy face several limitations, necessitating innovative approaches. In this study, the efficacy of a novel chemo-/sonodynamic/photothermal triune therapy utilizing paclitaxel-loaded gold nanoparticles (PTX@GNPs) for MCF-7 breast cancer cells treatment was explored.

View Article and Find Full Text PDF

Overcoming standard-of-care resistance in glioblastoma using nanoparticle-based drug delivery targeting the autophagy pathway.

Biochem Pharmacol

September 2025

Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA. Electronic address:

Glioblastoma (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by rapid growth, diffuse infiltration, and a dismal prognosis. Despite aggressive treatment involving maximal surgical resection followed by radiotherapy and temozolomide (TMZ) chemotherapy, therapeutic outcomes remain poor due to intrinsic and acquired resistance. Autophagy, a catabolic process that degrades damaged cellular components, plays a critical role in this resistance by enabling tumor cells to survive under metabolic, hypoxic, and therapeutic stress conditions.

View Article and Find Full Text PDF

Achieving high open-circuit voltage (V) continues to pose a significant challenge for kesterite CuZnSn(S,Se) (CZTSSe) solar cells, predominantly due to the pronounced charge carrier recombination occurring at heterointerface (HEI). To address this issue, an innovative non-metallic boron (B)-modification strategy is developed to optimize the HEI. The key advantages of this strategy are as follows: (i) Leveraging the strong bonding characteristic of B with three valence electrons, the dangling bonds on the absorber surface can be fully saturated, effectively passivating surface states without introducing new defects; (ii) Moreover, diffusion of B into the near-surface region of HEI during selenization process can create weak n-type B donor defects, which lowers the valence band maximum (VBM) of the absorber and mitigates Fermi level pinning.

View Article and Find Full Text PDF