Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pathological cardiac hypertrophy is the primary cause of heart failure, yet its underlying mechanisms remain incompletely understood. Transmembrane protein 100 (TMEM100) plays a role in various disorders, such as nervous system disease, pain and tumorigenesis, but its function in pathological cardiac hypertrophy is still unknown. In this study, we observed that TMEM100 is upregulated in cardiac hypertrophy. Functional investigations have shown that adeno-associated virus 9 (AAV9) mediated-TMEM100 overexpression mice attenuates transverse aortic constriction (TAC)-induced cardiac hypertrophy, including cardiomyocyte enlargement, cardiac fibrosis, and impaired heart structure and function. We subsequently demonstrated that adenoviral TMEM100 (AdTMEM100) mitigates phenylephrine (PE)-induced cardiomyocyte hypertrophy and downregulates the expression of cardiac hypertrophic markers in vitro, whereas TMEM100 knockdown exacerbates cardiomyocyte hypertrophy. The RNA sequences of the AdTMEM100 group and control group revealed that TMEM100 was involved in oxidative stress and the MAPK signaling pathway after PE stimulation. Mechanistically, we revealed that the transmembrane domain of TMEM100 (amino acids 53-75 and 85-107) directly interacts with the C-terminal region of TAK1 (amino acids 1-300) and inhibits the phosphorylation of TAK1 and its downstream molecules JNK and p38. TAK1-binding-defective TMEM100 failed to inhibit the activation of the TAK1-JNK/p38 pathway. Finally, the application of a TAK1 inhibitor (iTAK1) revealed that TAK1 is necessary for TMEM100-mediated cardiac hypertrophy. In summary, TMEM100 protects against pathological cardiac hypertrophy through the TAK1-JNK/p38 pathway and may serve as a promising target for the treatment of cardiac hypertrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389234PMC
http://dx.doi.org/10.1186/s12964-024-01816-2DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
32
pathological cardiac
16
cardiac
10
hypertrophy
10
tmem100
9
cardiomyocyte hypertrophy
8
amino acids
8
tak1-jnk/p38 pathway
8
tak1
5
tmem100 acts
4

Similar Publications

Yes-associated protein (YAP) is a major downstream nuclear coactivator of the Hippo pathway and is activated during myocardial hypertrophy. Verteporfin, a YAP inhibitor, may serve as a potential treatment for myocardial hypertrophy. This study was aimed at exploring the role and underlying mechanisms of verteporfin in isoproterenol (ISO)-induced myocardial hypertrophy both in vivo and in vitro.

View Article and Find Full Text PDF

Apical hypertrophic cardiomyopathy (ApHCM) is an uncommon, nonobstructive form of hypertrophic cardiomyopathy (HCM) that is associated with an increased risk of ventricular aneurysms, atrial fibrillation, heart failure, and cardiac death. In this case report, a 63-year-old male patient was found to have deeply negative T waves on electrocardiogram (EKG) during a routine preoperative evaluation in an outpatient internal medicine clinic. Imaging with echocardiography and cardiac magnetic resonance confirmed the diagnosis of ApHCM.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is characterized by impairments in social communication and the presence of additional conditions such as heart disease. Oxidative stress has been linked to the severity of autism, suggesting a potential role for antioxidants in mitigating its effects. Aspirin, an antioxidant and anti-inflammatory drug, has shown protective effects on heart function.

View Article and Find Full Text PDF

tRNA-derived small RNAs (tsRNAs) are a class of non-coding RNAs that are generated by cleavage of precursors or mature tRNAs under stress conditions such as hypoxia, oxidative stress and nutrient deficiency. Recent breakthroughs in RNA sequencing technology have revealed their association with cardiovascular diseases (CVDs), including myocardial infarction (MI), atherosclerosis, cardiac hypertrophy, aortic coarctation, and pulmonary arterial hypertension. tsRNAs play important biological functions in these diseases, including the inhibition of apoptosis, epigenetic modification, intercellular signaling mediation, translation, and regulation of gene expression.

View Article and Find Full Text PDF

Abstract: Hypertrophic cardiomyopathy (HCM) is a common hereditary heart disease and is the leading cause of sudden cardiac death in adolescents. Septal hypertrophy (SH) and apical hypertrophy (AH) are two common types. The former is characterized by abnormal septal myocardial thickening and the latter by left ventricular apical hypertrophy, both of which significantly increase the risk of heart failure, arrhythmias, and other serious complications.

View Article and Find Full Text PDF