Article Synopsis

  • Shape morphing is crucial for movement in tiny organisms, and the study introduces tiny robots (metabots) that can change their shape effectively.
  • These robots utilize a kirigami design with parts ranging from 10 nm to 100 μm, allowing them to expand and contract rapidly, achieving movement within 100 ms.
  • The technology allows for customizable shapes and motion patterns, paving the way for diverse applications like micromachines, adjustable optical devices, and small-scale medical tools.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shape morphing is vital to locomotion in microscopic organisms but has been challenging to achieve in sub-millimetre robots. By overcoming obstacles associated with miniaturization, we demonstrate microscopic electronically configurable morphing metasheet robots. These metabots expand locally using a kirigami structure spanning five decades in length, from 10 nm electrochemically actuated hinges to 100 μm splaying panels making up the ~1 mm robot. The panels are organized into unit cells that can expand and contract by 40% within 100 ms. These units are tiled to create metasheets with over 200 hinges and independent electronically actuating regions that enable the robot to switch between multiple target geometries with distinct curvature distributions. By electronically actuating independent regions with prescribed phase delays, we generate locomotory gaits. These results advance a metamaterial paradigm for microscopic, continuum, compliant, programmable robots and pave the way to a broad spectrum of applications, including reconfigurable micromachines, tunable optical metasurfaces and miniaturized biomedical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-024-02007-7DOI Listing

Publication Analysis

Top Keywords

electronically configurable
8
metasheet robots
8
electronically actuating
8
electronically
4
microscopic
4
configurable microscopic
4
microscopic metasheet
4
robots
4
robots shape
4
shape morphing
4

Similar Publications

Pulse diagnosis holds a pivotal role in traditional Chinese medicine (TCM) diagnostics, with pulse characteristics serving as one of the critical bases for its assessment. Accurate classification of these pulse pattern is paramount for the objectification of TCM. This study proposes an enhanced SMOTE approach to achieve data augmentation, followed by multi-domain feature extraction.

View Article and Find Full Text PDF

Triply periodic minimal surfaces have garnered significant interest in the field of biomaterial scaffolds due to their unique structural properties, including a high surface-to-volume (S/V) ratio, tunable permeability, and the potential for enhanced biocompatibility. Bone scaffolds necessitate specific features to effectively support tissue regeneration. This study examines the permeability and active cell proliferation area of advanced Triply Periodic Minimal Surface (TPMS) lattice structures, focusing on a novel lattice design.

View Article and Find Full Text PDF

Alstoniaschines A‒I, nine undescribed alkaloids from Alstonia scholaris and their potential medicinal effects on diabetic nephropathy.

Phytochemistry

September 2025

State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Educa

Alstoniaschines A‒I (1‒9), nine previously alkaloids sharing five different skeletons were obtained from the leaves of Alstonia scholaris. The structures and absolute configurations were established by their extensive spectroscopic data analyses, including NMR, HRESIMS, X-ray crystallography data, and theoretical ECD calculations. Compounds 1, 2, 3, and 9 exerted significant protective effect against oxidative stress and inflammatory damage of podocytes induced by high glucose, manifesting as the increase of superoxide dismutase, catalase, glutathione peroxidase, alongside the reductions of malondialdehyde, nitric oxide, lactate dehydrogenase.

View Article and Find Full Text PDF

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

Transition metal fluorides because of the high electronegativity of fluorine may enhance the local electron density of the metal sites and promote water molecule dissociation and charge transfer. However, enhancing the intrinsic activity of fluorides to improve material stability remains a challenge. Herein, we develop an innovative four-step synthetic strategy (electrochemical deposition → co-precipitation → ligand exchange → in situ fluorination) to engineer three-dimensional porous Fe-doped CoF nanocubes vertically anchored on MXene (Fe-CoF/MXene/NF).

View Article and Find Full Text PDF