98%
921
2 minutes
20
The increasing cognitive load on infantry squad leaders is a common challenge in modern military operations. As this can increase health and safety risks, there is a need to study the factors responsible for the increase in cognitive load. Ecological situations inherently lack strong experimental controls; therefore, microworlds that simulate real tasks are the usual alternative to field studies. However, to the best of our knowledge, there are currently no microworlds that reproduce the main tasks of the squad leader during operations. This article adresses this gap by describing the design and validation of a new microworld: the Simulated Multitasking Environment for the Squad leader (SMES). Qualitative research was firstly conducted to highlight several squad leader's generic tasks (i.e., common to many situations in the field) that guided the design of the SMES. Psychometric validation of the SMES was then based on two experiments: (i) the first evaluated the microworld's psychometric qualities when tasks were performed individually; and (ii) the second explored concurrent tasks, reflecting real-world complexity. The results showed that the parameters manipulated for each task were relevant for inducing cognitive load, measured using a secondary detection response task and the NASA-TLX questionnaire. The SMES demonstrated satisfactory convergent and content validity in multitasking but not in single-task conditions. Performance in multitasking situations therefore does not seem to depend on task-specific skills, suggesting the existence of an independent factor-multitasking ability. Theoretical and practical implications of the SMES validation are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11385692 | PMC |
http://dx.doi.org/10.3389/fpsyg.2024.1433822 | DOI Listing |
J Safety Res
September 2025
Myers-Lawson School of Construction, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Electronic address:
Introduction: Exoskeletons have the potential to reduce workplace injuries; however, their use could increase cognitive load. While prior studies have explored the cognitive load impacts of passive and active back-support exoskeletons, research comparing their effects in construction-related tasks remains limited, particularly using electroencephalogram theta brainwave activity as a cognitive load indicator. This study assesses and compares the cognitive load implications of active and passive back-support exoskeletons relative to a baseline (i.
View Article and Find Full Text PDFNeurosci Biobehav Rev
September 2025
Department of Experimental and Applied Psychology, Institute for Brain and Behaviour, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam. Electronic address:
Human vision deals with two major limitations. First, vision is strongly foveated and deteriorates with eccentricity. Second, visual attention selectively prioritizes some stimuli over others.
View Article and Find Full Text PDFTraffic Inj Prev
September 2025
School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing, China.
Objective: To clarify the potential risks and causative mechanisms of glare from nighttime road fill lights on driving safety, this study investigates the dual interference of glare-induced visual cognitive load and physiological stress.
Methods: A field driving experiment involving 20 drivers was conducted, with real-time collection of visual data (e.g.
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Washington University in St. Louis, 660 South Euclid Avenue, Campus Box 8054, St Louis, MO, United States, 1 3142737801.
Background: Clinical communication is central to the delivery of effective, timely, and safe patient care. The use of text-based tools for clinician-to-clinician communication-commonly referred to as secure messaging-has increased exponentially over the past decade. The use of secure messaging has a potential impact on clinician work behaviors, workload, and cognitive burden.
View Article and Find Full Text PDF