Population suppression with dominant female-lethal alleles is boosted by homing gene drive.

BMC Biol

Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Methods to suppress pest insect populations using genetic constructs and repeated releases of male homozygotes have recently been shown to be an attractive alternative to older sterile insect techniques based on radiation. Female-specific lethal alleles have substantially increased power, but still require large, sustained transgenic insect releases. Gene drive alleles bias their own inheritance to spread throughout populations, potentially allowing population suppression with a single, small-size release. However, suppression drives often suffer from efficiency issues, and the most well-studied type, homing drives, tend to spread without limit.

Results: In this study, we show that coupling female-specific lethal alleles with homing gene drive allowed substantial improvement in efficiency while still retaining the self-limiting nature (and thus confinement) of a lethal allele strategy. Using a mosquito model, we show the required release sizes for population elimination in a variety of scenarios, including different density growth curves, with comparisons to other systems. Resistance alleles reduced the power of this method, but these could be overcome by targeting an essential gene with the drive while also providing rescue. A proof-of-principle demonstration of this system in Drosophila melanogaster was effective in both biasing its inheritance and achieving high lethality among females that inherit the construct in the absence of antibiotic.

Conclusions: Overall, our study shows that substantial improvements can be achieved in female-specific lethal systems for population suppression by combining them with various types of gene drive.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389273PMC
http://dx.doi.org/10.1186/s12915-024-02004-xDOI Listing

Publication Analysis

Top Keywords

gene drive
20
population suppression
12
female-specific lethal
12
homing gene
8
lethal alleles
8
alleles
5
gene
5
drive
5
population
4
suppression dominant
4

Similar Publications

The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.

View Article and Find Full Text PDF

Through horizontal gene transfer, closely related bacterial strains assimilate distinct sets of genes, resulting in significantly varied lifestyles. However, it remains unclear how strains properly regulate horizontally transferred virulence genes. We hypothesized that strains may use components of the core genome to regulate diverse horizontally acquired genes.

View Article and Find Full Text PDF

Dysfunction of several WD40 family proteins causes diverse endocrine diseases. Until recently, MEP50, a WD40 protein, was considered a Gene of Unknown Significance (GUS) because no inherited diseases had been linked to its function. However, genetic inactivation of MEP50 in mouse models or somatic mutations in humans drive oncogenesis in several endocrine-related cancers, including those of the prostate, breast, and uterus.

View Article and Find Full Text PDF

Organelle stresses and energetic metabolisms promote endothelial-to-mesenchymal transition and fibrosis via upregulating FOSB and MEOX1 in Alzheimer's disease.

Front Mol Neurosci

August 2025

Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.

Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.

Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.

View Article and Find Full Text PDF

Histones were once thought to be exclusive to the nucleus, but were recently discovered in the extracellular space, where they play important roles in disease pathogenesis. In addition to their traditional functions in chromatin organization and gene regulation, extracellular histones also serve as damage-associated molecular patterns (DAMPs), drive inflammation and immune responses, and are responsible for the progression of diseases such as sepsis, autoimmune diseases, and inflammatory diseases. To effectively target extracellular histones and improve disease progression, this review begins with the release and pathogenic mechanisms of histones and explains the main pathogenic mechanisms of extracellular histones in many diseases.

View Article and Find Full Text PDF