GmBSK1-GmGSK1-GmBES1.5 regulatory module controls heat tolerance in soybean.

J Adv Res

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences/Seed Industry Laboratory, Sanya 572024, China. Electronic

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Heat stress poses a severe threat to the growth and production of soybean (Glycine max). Brassinosteroids (BRs) actively participate in plant responses to abiotic stresses, however, the role of BR signaling pathway genes in response to heat stress in soybean remains poorly understood.

Objectives: In this study, we investigate the regulatory mechanisms of GmBSK1 and GmBES1.5 in response to heat stress and the physiological characteristics and yield performance under heat stress conditions.

Methods: Transgenic technology and CRISPR/Cas9 technology were used to generated GmBSK1-OE, GmBES1.5-OE and gmbsk1 transgenic soybean plants, and transcriptome analysis, LUC activity assay and EMSA assay were carried out to elucidate the potential molecular mechanism underlying GmBSK1-GmBES1.5-mediated heat stress tolerance in soybean.

Results: CRISPR/Cas9-generated gmbsk1 knockout mutants exhibited increased sensitivity to heat stress due to a reduction in their ability to scavenge reactive oxygen species (ROS). The expression of GmBES1.5 was up-regulated in GmBSK1-OE plants under heat stress conditions, and it directly binds to the E-box motif present in the promoters of abiotic stress-related genes, thereby enhancing heat stress tolerance in soybean plants. Furthermore, we identified an interaction between GmGSK1 and GmBES1.5, while GmGSK1 inhibits the transcriptional activity of GmBES1.5. Interestingly, the interaction between GmBSK1 and GmGSK1 promotes the localization of GmGSK1 to the plasma membrane and releases the transcriptional activity of GmBES1.5.

Conclusion: Our findings suggest that both GmBSK1 and GmBES1.5 play crucial roles in conferring heat stress tolerance, highlighting a potential strategy for breeding heat-tolerant soybean crops involving the regulatory module consisting of GmBSK1-GmGSK1-GmBES1.5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12225950PMC
http://dx.doi.org/10.1016/j.jare.2024.09.004DOI Listing

Publication Analysis

Top Keywords

heat stress
36
stress tolerance
12
heat
10
stress
9
regulatory module
8
tolerance soybean
8
response heat
8
gmbsk1 gmbes15
8
soybean plants
8
transcriptional activity
8

Similar Publications

We evaluated the systemic cardiovascular and carotid baroreflex support of arterial pressure during recovery from whole-body, passive heating in young and older adults. Supine mean arterial pressure (MAP), cardiac output (Q; acetylene washin), systemic vascular conductance (SVC), heart rate (HR), and stroke volume (SV) were evaluated in 16 young (8F, 18-29 years) and nine older (6F, 61-73 years) adults at normothermic baseline and for 60-min passive heating and 120-min normothermic recovery. Externally applied neck pressure was used to evaluate HR, brachial vascular conductance, and MAP responses to carotid baroreceptor unloading.

View Article and Find Full Text PDF

Among the different forms of hydrotherapy, carbon dioxide (CO) water immersion improves peripheral vasodilation and blood flow compared with tap water immersion; however, the heat stress placed on the body through CO water immersion and the appropriate immersion protocols are uncertain. Therefore, this study aimed to compare the thermoregulatory responses during CO and tap water immersions. The participants were 10 male college baseball players.

View Article and Find Full Text PDF

Genome-wide identification and functional characterization of rapid alkalinization factor 6 as a key peptide regulator of abiotic stress tolerance in Tartary buckwheat.

Plant Sci

September 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China. Electronic address:

Rapid alkalinization factors (RALFs) are cysteine-rich signaling peptides in plants that play critical roles in development, immune regulation, and responses to abiotic stress. Despite their importance, the functional characterization of RALF family members in Tartary buckwheat (Fagopyrum tataricum), a nutrient-rich crop known for its remarkable resilience to multiple stresses, remains largely unexplored. In this study, we conducted a comprehensive genome-wide analysis to identify and characterize the FtRALF gene family in Tartary buckwheat, examining their phylogenetic relationships, gene structures, and duplication events.

View Article and Find Full Text PDF

Owing to the anti-inflammatory and anti-oxidant benefits of Saccharomyces cerevisiae (SC), 20 mature male albino rats, assigned into four groups (A-D; n = 5), were used to investigate its ameliorative effects on heat stress-induced testicular and humoral alterations. Group A rats were neither treated with SC nor exposed to heat [-SC, -HS]. Group B rats were treated with 7 mg/kg of SC, but were not exposed to heat [+SC, -HS].

View Article and Find Full Text PDF

Genome-wide analysis of WRKY transcription factors in Zygophyllum xanthoxylum and the role of ZxWRKY4 in response to high temperature.

Plant Physiol Biochem

September 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China. Electronic address:

As global climate change intensifies heat stress and threatens food security, exploring and utilizing valuable genetic resources are crucial for crop improvement. Zygophyllum xanthoxylum, a xerophyte adapted to extreme desert conditions, is a valuable model for excavating thermotolerance genes. This species exhibits differential expression of numerous WRKY genes under heat treatments.

View Article and Find Full Text PDF