98%
921
2 minutes
20
Introduction: Heat stress poses a severe threat to the growth and production of soybean (Glycine max). Brassinosteroids (BRs) actively participate in plant responses to abiotic stresses, however, the role of BR signaling pathway genes in response to heat stress in soybean remains poorly understood.
Objectives: In this study, we investigate the regulatory mechanisms of GmBSK1 and GmBES1.5 in response to heat stress and the physiological characteristics and yield performance under heat stress conditions.
Methods: Transgenic technology and CRISPR/Cas9 technology were used to generated GmBSK1-OE, GmBES1.5-OE and gmbsk1 transgenic soybean plants, and transcriptome analysis, LUC activity assay and EMSA assay were carried out to elucidate the potential molecular mechanism underlying GmBSK1-GmBES1.5-mediated heat stress tolerance in soybean.
Results: CRISPR/Cas9-generated gmbsk1 knockout mutants exhibited increased sensitivity to heat stress due to a reduction in their ability to scavenge reactive oxygen species (ROS). The expression of GmBES1.5 was up-regulated in GmBSK1-OE plants under heat stress conditions, and it directly binds to the E-box motif present in the promoters of abiotic stress-related genes, thereby enhancing heat stress tolerance in soybean plants. Furthermore, we identified an interaction between GmGSK1 and GmBES1.5, while GmGSK1 inhibits the transcriptional activity of GmBES1.5. Interestingly, the interaction between GmBSK1 and GmGSK1 promotes the localization of GmGSK1 to the plasma membrane and releases the transcriptional activity of GmBES1.5.
Conclusion: Our findings suggest that both GmBSK1 and GmBES1.5 play crucial roles in conferring heat stress tolerance, highlighting a potential strategy for breeding heat-tolerant soybean crops involving the regulatory module consisting of GmBSK1-GmGSK1-GmBES1.5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12225950 | PMC |
http://dx.doi.org/10.1016/j.jare.2024.09.004 | DOI Listing |
Physiol Rep
September 2025
Department of Human Physiology, University of Oregon, Eugene, Oregon, USA.
We evaluated the systemic cardiovascular and carotid baroreflex support of arterial pressure during recovery from whole-body, passive heating in young and older adults. Supine mean arterial pressure (MAP), cardiac output (Q; acetylene washin), systemic vascular conductance (SVC), heart rate (HR), and stroke volume (SV) were evaluated in 16 young (8F, 18-29 years) and nine older (6F, 61-73 years) adults at normothermic baseline and for 60-min passive heating and 120-min normothermic recovery. Externally applied neck pressure was used to evaluate HR, brachial vascular conductance, and MAP responses to carotid baroreceptor unloading.
View Article and Find Full Text PDFPhysiol Rep
September 2025
Department of Sports Medicine, Japan Institute of Sports Sciences, Kita-ku, Tokyo, Japan.
Among the different forms of hydrotherapy, carbon dioxide (CO) water immersion improves peripheral vasodilation and blood flow compared with tap water immersion; however, the heat stress placed on the body through CO water immersion and the appropriate immersion protocols are uncertain. Therefore, this study aimed to compare the thermoregulatory responses during CO and tap water immersions. The participants were 10 male college baseball players.
View Article and Find Full Text PDFPlant Sci
September 2025
Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China. Electronic address:
Rapid alkalinization factors (RALFs) are cysteine-rich signaling peptides in plants that play critical roles in development, immune regulation, and responses to abiotic stress. Despite their importance, the functional characterization of RALF family members in Tartary buckwheat (Fagopyrum tataricum), a nutrient-rich crop known for its remarkable resilience to multiple stresses, remains largely unexplored. In this study, we conducted a comprehensive genome-wide analysis to identify and characterize the FtRALF gene family in Tartary buckwheat, examining their phylogenetic relationships, gene structures, and duplication events.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Department of Animal and Diary Sciences, University of Wisconsin, Madison, USA.
Owing to the anti-inflammatory and anti-oxidant benefits of Saccharomyces cerevisiae (SC), 20 mature male albino rats, assigned into four groups (A-D; n = 5), were used to investigate its ameliorative effects on heat stress-induced testicular and humoral alterations. Group A rats were neither treated with SC nor exposed to heat [-SC, -HS]. Group B rats were treated with 7 mg/kg of SC, but were not exposed to heat [+SC, -HS].
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China. Electronic address:
As global climate change intensifies heat stress and threatens food security, exploring and utilizing valuable genetic resources are crucial for crop improvement. Zygophyllum xanthoxylum, a xerophyte adapted to extreme desert conditions, is a valuable model for excavating thermotolerance genes. This species exhibits differential expression of numerous WRKY genes under heat treatments.
View Article and Find Full Text PDF