Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although previous studies have shown that repetitive transcranial magnetic stimulation (rTMS) can ameliorate addictive behaviors and cravings, the underlying neural mechanisms remain unclear. This study aimed to investigate the effect of high-frequency rTMS with the left dorsolateral prefrontal cortex (L-DLPFC) as a target region on smoking addiction in nicotine-dependent individuals by detecting the change of spontaneous brain activity in the reward circuitry. We recruited 17 nicotine-dependence participants, who completed 10 sessions of 10 Hz rTMS over a 2-week period and underwent evaluation of several dependence-related scales, and resting-state fMRI scan before and after the treatment. Functional connectivity (FC) analysis was conducted with reward-related brain regions as seeds, including ventral tegmental area, bilateral nucleus accumbens (NAc), bilateral DLPFC, and bilateral amygdala. We found that, after the treatment, individuals showed reduced nicotine dependence, alleviated tobacco withdrawal symptoms, and diminished smoking cravings. The right NAc showed increased FC with right fusiform gyrus, inferior temporal gyrus (ITG), calcarine fissure and surrounding cortex, superior occipital gyrus (SOG), lingual gyrus, and bilateral cuneus. No significant FC changes were observed in other seed regions. Moreover, the changes in FC between the right NAc and the right ITG as well as SOG before and after rTMS were negatively correlated with changes in smoking scale scores. Our findings suggest that high-frequency L-DLPFC-rTMS reduces nicotine dependence and improves tobacco withdrawal symptoms, and the dysfunctional connectivity in reward circuitry may be the underlying neural mechanism for nicotine addiction and its therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374416PMC
http://dx.doi.org/10.1155/2024/5673579DOI Listing

Publication Analysis

Top Keywords

reward circuitry
12
nicotine dependence
12
high-frequency rtms
8
underlying neural
8
tobacco withdrawal
8
withdrawal symptoms
8
rtms
5
modulation high-frequency
4
rtms reward
4
circuitry individuals
4

Similar Publications

Psychotic-like experiences (PLEs) -subclinical experiences or symptoms that resemble psychosis, such as hallucinations and delusional thoughts-often emerge during adolescence and are predictive of serious psychopathology. Understanding PLEs during adolescence is crucial due to co-occurring developmental changes in neural reward systems that heighten the risk for psychotic-related and affective psychopathology, especially in those with a family history of severe mental illness (SMI). We examined associations among PLEs, clinical symptoms, and neural reward function during this critical developmental period.

View Article and Find Full Text PDF

Paternal Cocaine Exposure and Its Testicular Legacy: Epigenetic, Physiological, and Intergenerational Consequences.

Biology (Basel)

August 2025

Instituto de Investigaciones Farmacológicas, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Junín 956, piso 5, Buenos Aires C1113, Argentina.

Cocaine use remains a major public health concern, with rising global prevalence and a well-established profile of neurotoxicity and addictive potential. While the central nervous system has been the primary focus of cocaine research, emerging evidence indicates that cocaine also disrupts male reproductive physiology. In the testis, cocaine alters the endocrine microenvironment, induces cell-specific damage, and disrupts spermatogenesis.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by progressive neurodegeneration, which is associated with motor and non-motor symptoms. Dopamine replacement therapy can remediate motor symptoms, but can also cause impulse control disorder (ICD), characterized by pathological gambling, hypersexuality, and/or compulsive shopping. Approximately 14-40% of all medicated PD patients suffer from ICD.

View Article and Find Full Text PDF

While the hyper- and hypo- reward or punishment sensitivities (RS, PS) have received considerable attention as prominent transdiagnostic features of psychopathology, the lack of an overarching neurobiological characterization currently limits their early identification and neuromodulation. Here we combined microarray data from the Allen Human Brain Atlas with a multimodal fMRI approach to uncover the neurobiological signatures of RS and PS in a discovery-replication design (N=655 healthy participants, 442 Females). Both RS and PS were mapped separately in the brain, with the functional connectome in the fronto-striatal network encoding reward responsiveness, while the fronto-insular system was particularly engaged in punishment sensitivity.

View Article and Find Full Text PDF