Molecular dynamics simulations of the effect of static electric field on progressive ice formation.

J Chem Phys

Mechanics and Aerospace Design Laboratory, University of Toronto, Toronto, Ontario M5S 3G8, Canada.

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ice accumulation under static electric fields presents a significant hazard to transmission lines and power grids. Contemporary computational studies of electrofreezing predominantly probed excessive electric fields (109 V/m) that are significantly higher than those typically encountered in proximity to transmission lines. To elucidate the influence of realistic electric fields (105 V/m) on ice crystallization, we run extensive molecular dynamics (MD) simulations across dual ice-water coexistence systems. Three aspects of work were accordingly examined. First, we investigated the influence of the effect of static electric fields, with a strength of 105 V/m, along three orthogonal axes on the phase transition during the encountered freezing and melting processes. Second, we established the mechanism of how the direction of an electric field, the initial ice crystallography, and the adjacent crystal planes influence the solidification process. Third, the results of our MD simulations were further post-processed to determine the dipole moment, radial distribution, and angle distribution resulting from the static electric field. Our results indicate that while weak electric fields do not cause complete polarization of liquid water molecules, they can induce a transition to a more structured ice-like geometry of the water molecules at the ice-water interphase region, particularly when applied perpendicular to the ice-water interphase. Notably, the interface adjacent to cubic ice exhibits a greater response to the electric fields than that adjacent to hexagonal ice. This is attributable to the intrinsic differences in their original hydrogen bonding networks.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0226624DOI Listing

Publication Analysis

Top Keywords

electric fields
24
static electric
16
electric field
12
electric
9
molecular dynamics
8
dynamics simulations
8
transmission lines
8
105 v/m
8
water molecules
8
ice-water interphase
8

Similar Publications

Background: Charcot foot is a debilitating complication of peripheral neuropathy and is primarily associated with diabetes, leading to structural damage, ulceration, and osteomyelitis. Pulsed electromagnetic field (PEMF) therapy is a promising treatment modality for wound healing and bone metabolism.

Objective: To evaluate the efficacy of PEMF therapy in promoting bone growth and ulcer healing in patients with Charcot foot ulcers.

View Article and Find Full Text PDF

Correlated spiking has been widely found in large population of neurons and been linked to neural coding. Transcranial alternating current stimulation (tACS) is a promising non-invasive brain stimulation technique that can modulate the spiking activity of neurons. Despite its growing application, the tACS effects on the temporal correlation between spike trains are still not fully understood.

View Article and Find Full Text PDF

Observing differential spin currents by resonant inelastic X-ray scattering.

Nature

September 2025

National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.

Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.

View Article and Find Full Text PDF

Color-thermal multispectral camouflage with VO-based dynamic regulator.

Light Sci Appl

September 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Camouflage technology has garnered increasing attention for various applications. With the continuous advancement of detection technologies and the increasing variability of camouflage scenarios, the demand for multispectral dynamic camouflage has been steadily growing. In this work, we present a multispectral dynamic regulator based on phase-changing material vanadium dioxide (VO) that can be dynamically and functional-independently regulated for reflective color and thermal radiation.

View Article and Find Full Text PDF

Reconfigurable nonlinear Pancharatnam-Berry diffractive optics with photopatterned ferroelectric nematics.

Light Sci Appl

September 2025

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.

Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.

View Article and Find Full Text PDF