Color-thermal multispectral camouflage with VO-based dynamic regulator.

Light Sci Appl

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Camouflage technology has garnered increasing attention for various applications. With the continuous advancement of detection technologies and the increasing variability of camouflage scenarios, the demand for multispectral dynamic camouflage has been steadily growing. In this work, we present a multispectral dynamic regulator based on phase-changing material vanadium dioxide (VO) that can be dynamically and functional-independently regulated for reflective color and thermal radiation. It has been shown that the device can achieve a wide color gamut variation in visible band while simultaneously achieving highest emissivity tunability (Δε=-0.58) in the atmospheric window up to now, achieves multispectral camouflage spanning the visible and infrared spectra among VO-based devices. To go a step further, we advance the device featuring long-term cycling stability to achieve thermal-electric dual-mode response and flexibility for a series real-world camouflage performance evaluation. We have also demonstrated the digital camouflage based on multispectral dynamic regulator through Neighboring Color Block Camouflage Algorithm, highlighting its potential for practical implementation in different camouflage scenarios. The device achieves multispectral dynamic camouflage, opening a path for advancing the technology development in both the scientific field and practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41377-025-01968-xDOI Listing

Publication Analysis

Top Keywords

multispectral dynamic
16
dynamic regulator
12
camouflage
10
multispectral camouflage
8
camouflage scenarios
8
dynamic camouflage
8
achieves multispectral
8
dynamic
5
multispectral
5
color-thermal multispectral
4

Similar Publications

Color-thermal multispectral camouflage with VO-based dynamic regulator.

Light Sci Appl

September 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.

Camouflage technology has garnered increasing attention for various applications. With the continuous advancement of detection technologies and the increasing variability of camouflage scenarios, the demand for multispectral dynamic camouflage has been steadily growing. In this work, we present a multispectral dynamic regulator based on phase-changing material vanadium dioxide (VO) that can be dynamically and functional-independently regulated for reflective color and thermal radiation.

View Article and Find Full Text PDF

Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).

View Article and Find Full Text PDF

Above-ground biomass contributes a large proportion of mangrove carbon stock; however, spatio-temporal dynamics of biomass are poorly understood in carbonate settings of the Southern Hemisphere. This influences the capacity to accurately project the effects of accelerating sea-level rise on this important carbon store. Here, above-ground biomass and productivity dynamics were quantified across mangrove age zones dominated by , spanning a tidal gradient atop a reef platform at Low Isles, Great Barrier Reef, Australia.

View Article and Find Full Text PDF

Background: Water and nitrogen are essential elements prone to deficiency during plant growth. Current water-fertilizer monitoring technologies are unable to meet the demands of large-scale cultivation. Near-ground remote sensing technology based on unmanned aerial vehicle (UAV) multispectral image is widely used for crop growth monitoring and agricultural management and has proven to be effective for assessing water and nitrogen status.

View Article and Find Full Text PDF

Indian agriculture largely depends on the timely and spatially variable availability of water resources which are replenished during the monsoon season. In the state of Telangana, a significant portion of the available water is utilized for flooded rice cultivation, both in surface water-fed command areas and in groundwater-dependent regions. The spatial extent of seasonal rice cultivation varies annually in response to water availability that is a key indicator of how farmers adapt to regional and global environmental and socio-economic changes.

View Article and Find Full Text PDF