98%
921
2 minutes
20
Purpose: To predict the efficacy of patients treated with hepatectomy and transarterial chemoembolization (TACE) based on machine learning models using clinical and radiomics features.
Patients And Methods: Patients with HCC whose first treatment was hepatectomy or TACE from June 2016 to July 2021 were collected in the retrospective cohort study. To ensure a causal effect of treatment effect and treatment modality, perfectly matched patients were obtained according to the principle of propensity score matching and used as an independent test cohort. Inverse probability of treatment weighting was used to control bias for unmatched patients, and the weighted results were used as the training cohort. Clinical characteristics were selected by univariate and multivariate analysis of cox proportional hazards regression, and radiomics features were selected using correlation analysis and random survival forest. The machine learning models (Death and Death) were constructed to predict the probability of patient death after treatment (hepatectomy and TACE) by combining clinical and radiomics features, and an optimal treatment regimen was recommended. In addition, a prognostic model was constructed to predict the survival time of all patients.
Results: A total of 418 patients with HCC who received either hepatectomy (n=267, mean age, 58 years ± 11 [standard deviation]; 228 men) or TACE (n=151, mean age, 59 years ± 13 [standard deviation]; 127 men) were recruited. After constructing the machine learning models Death and Death, patients were divided into the hepatectomy-preferred and TACE-preferred groups. In the hepatectomy-preferred group, hepatectomy had a significantly prolonged survival time than TACE (training cohort: < 0.001; testing cohort: < 0.001), and vise versa for the TACE-preferred group. In addition, the prognostic model yielded high predictive capability for overall survival.
Conclusion: The machine learning models could predict the outcomes difference between hepatectomy and TACE, and prognostic models could predict the overall survival for HCC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11370756 | PMC |
http://dx.doi.org/10.2147/JHC.S470550 | DOI Listing |
J Dent Educ
September 2025
Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, P. R. China.
Background: Virtual reality (VR) and artificial intelligence (AI) technologies have advanced significantly over the past few decades, expanding into various fields, including dental education.
Purpose: To comprehensively review the application of VR and AI technologies in dentistry training, focusing on their impact on cognitive load management and skill enhancement. This study systematically summarizes the existing literature by means of a scoping review to explore the effects of the application of these technologies and to explore future directions.
Diagn Progn Res
September 2025
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Hospital-acquired venous thromboembolism (HA-VTE) is a leading cause of morbidity and mortality among hospitalized adults. Numerous prognostic models have been developed to identify those patients with elevated risk of HA-VTE. None, however, has met the necessary criteria to guide clinical decision-making.
View Article and Find Full Text PDFAcad Radiol
September 2025
Department of General Surgery, Abdulkadir Yuksel State Hospital, Gaziantep, Turkey (A.N.Ş.).
Anal Chim Acta
November 2025
Laser Spectroscopy Lab, Department of Physics, University of Agriculture Faisalabad, 38090, Pakistan. Electronic address:
Background: Classification of rose species and verities is a challenging task. Rose is used worldwide for various applications, including but not restricted to skincare, medicine, cosmetics, and fragrance. This study explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for species and variety classification of rose flowers, leveraging its advantages such as minimal sample preparation, real-time analysis, and remote sensing.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, PR China; Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, Zhejiang, 313001, PR China; Laboratory for Microwave Spatial Inte
Background: X-ray fluorescence (XRF) technology is a promising method for estimating the metal element content in ores, which helps in understanding ore composition and optimizing mining and processing strategies. However, due to the presence of a large number of redundant features in XRF spectra, traditional quantitative analysis models struggle to effectively capture the nonlinear relationship between element concentration and spectral information of XRF, making it more difficult to accurately predict metal element concentrations. Thus, analyzing ore element concentrations by XRF remains a significant challenge.
View Article and Find Full Text PDF