98%
921
2 minutes
20
Background: Hospital-acquired venous thromboembolism (HA-VTE) is a leading cause of morbidity and mortality among hospitalized adults. Numerous prognostic models have been developed to identify those patients with elevated risk of HA-VTE. None, however, has met the necessary criteria to guide clinical decision-making. This study outlines a protocol for refining and validating a general-purpose prognostic model for HA-VTE, designed for real-time automation within the electronic health record (EHR) system.
Methods: A retrospective cohort of 132,561 inpatient encounters (89,586 individual patients) at a large academic medical center will be collected, along with clinical and demographic data available as part of routine care. Data for temporal, geographic, and domain external validation cohorts will also be collected. Logistic regression will be used to predict occurrence of HA-VTE during an inpatient encounter. Variables considered for model inclusion will be based on prior demonstrated association with HA-VTE and their availability in both retrospective EHR data and routine clinical care. Least absolute shrinkage and selection operator (LASSO) with tenfold cross-validation will be used for initial variable selection. Variables selected by the LASSO procedure, along with those deemed necessary by clinicians, will be used in an unpenalized multivariable logistic regression model. Discrimination and calibration will be reported for the derivation and validation cohorts. Discrimination will be measured using Harrell's C statistic. Calibration will be measured using calibration intercept, calibration slope, Brier score, integrated calibration index, and visual examination of non-linear calibration curve. Model reporting will adhere to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis guidelines for clinical prediction models using machine learning methods (TRIPOD + AI).
Discussion: We describe methods for developing, evaluating, and validating a prognostic model for HA-VTE using routinely collected EHR data. By combining best practices in statistical development and validation, knowledge engineering, and clinical domain knowledge, the resulting model should be well suited for real-time clinical implementation. Although this protocol describes our development of a model for HA-VTE, the general approach can be applied to other clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s41512-025-00205-8 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416065 | PMC |
Front Immunol
September 2025
Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institute and Karolinska University Hospital Solna, Stockholm, Sweden.
Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.
Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.
J Hepatocell Carcinoma
September 2025
Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.
Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.
Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.
Int J Chron Obstruct Pulmon Dis
September 2025
The First Clinical Medical College of Lanzhou University, Lanzhou, People's Republic of China.
Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic respiratory disorder characterized by airway inflammation and irreversible airflow limitation. Its marked heterogeneity and complexity pose significant challenges to traditional clinical assessments in terms of prognostic prediction and personalized management. In recent years, the exploration of biomarkers has opened new avenues for the precise evaluation of COPD, particularly through multi-biomarker prediction models and integrative multimodal data strategies, which have substantially improved the accuracy and reliability of prognostic assessments.
View Article and Find Full Text PDFBreast J
September 2025
University of Hawai'i Cancer Center, Honolulu, Hawaii, USA.
The Oncotype DX test is standardly used for patients with early-stage, hormone-receptor-positive, HER2-negative breast cancers to determine the benefit from chemotherapy and the likelihood of distant recurrence. The relationship between Oncotype DX recurrence scores and race/ethnicity is still being studied. This retrospective study aims to evaluate the relationship between Oncotype DX recurrence scores, race/ethnicity, and clinicopathological factors and to support the applicability of the Oncotype DX test for a diverse breast cancer population of Hawaii.
View Article and Find Full Text PDFFront Oncol
August 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
Objective: The risk of lymph node metastasis significantly influences the choice of surgical strategy for patients with early-stage endometrial cancer. While sentinel lymph node dissection can be considered in clinically early-stage endometrial cancer, lymph node evaluation might be omitted in patients with very low risk of lymph node metastasis. This study aims to develop a predicting model for lymph node metastasis in these patients, identifying potential metastases as thoroughly as possible to provide clinicians with a preoperative reference that helps in decisions about surgical procedures and treatments.
View Article and Find Full Text PDF