98%
921
2 minutes
20
Background: Glioblastoma (GBM) is an immunosuppressive, universally lethal cancer driven by glioblastoma stem cells (GSCs). The interplay between GSCs and immunosuppressive microglia plays crucial roles in promoting the malignant growth of GBM; however, the molecular mechanisms underlying this crosstalk are unclear. This study aimed to investigate the role of POSTN in maintaining GSCs and the immunosuppressive phenotype of microglia.
Methods: The expression of POSTN in GBM was identified via immunohistochemistry, quantitative real-time PCR, and immunoblotting. Tumorsphere formation assay, Cell Counting Kit-8 assay and immunofluorescence were used to determine the key role of POSTN in GSC maintenance. ChIP-seq and ChIP-PCR were conducted to confirm the binding sequences of β-catenin in the promoter region of FOSL1. Transwell migration assays, developmental and functional analyses of CD4 T cells, CFSE staining and analysis, enzyme-linked immunosorbent assays and apoptosis detection tests were used to determine the key role of POSTN in maintaining the immunosuppressive phenotype of microglia and thereby promoting the immunosuppressive tumor microenvironment. Furthermore, the effects of POSTN on GSC maintenance and the immunosuppressive phenotype of microglia were investigated in a patient-derived xenograft model and orthotopic glioma mouse model, respectively.
Results: Our findings revealed that POSTN secreted from GSCs promotes GSC self-renewal and tumor growth via activation of the αVβ3/PI3K/AKT/β-catenin/FOSL1 pathway. In addition to its intrinsic effects on GSCs, POSTN can recruit microglia and upregulate CD70 expression in microglia through the αVβ3/PI3K/AKT/NFκB pathway, which in turn promotes Treg development and functionality and supports the formation of an immunosuppressive tumor microenvironment. In both in vitro models and orthotopic mouse models of GBM, POSTN depletion disrupted GSC maintenance, decreased the recruitment of immunosuppressive microglia and suppressed GBM growth.
Conclusion: Our findings reveal that POSTN plays critical roles in maintaining GSCs and the immunosuppressive phenotype of microglia and provide a new therapeutic target for treating GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373117 | PMC |
http://dx.doi.org/10.1186/s13046-024-03175-9 | DOI Listing |
Trends Pharmacol Sci
September 2025
Department of Biosciences and Bioinformatics & Suzhou Municipal Key Lab of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manch
Regulatory T cells (Tregs) play a pivotal role in maintaining immune tolerance and sustaining immunological homeostasis. Emerging evidence indicates that Treg characteristics and functional alterations can significantly contribute to the pathogenesis of autoimmune diseases including type 1 diabetes mellitus (T1DM). Notably, recent studies have established a positive correlation between diminished numbers of Tregs and the onset of T1DM.
View Article and Find Full Text PDFAnn Rheum Dis
September 2025
Department of Pediatrics, Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA.
Objectives: Juvenile dermatomyositis (JDM) is a heterogeneous autoimmune condition needing targeted treatment approaches and improved understanding of molecular mechanisms driving clinical phenotypes. We utilised exploratory proteomics from a longitudinal North American cohort of patients with new-onset JDM to identify biological pathways at disease onset and follow-up, tissue-specific disease activity, and myositis-specific autoantibody (MSA) status.
Methods: We measured 3072 plasma proteins (Olink panel) in 56 patients with JDM within 12 weeks of starting treatment (from the Childhood Arthritis and Rheumatology Research Alliance Registry and 3 additional sites) and 8 paediatric controls.
Biomed Pharmacother
September 2025
Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Germany.
Chronic pain (CP) is a major health issue globally, affecting millions and resulting in a significant healthcare burden. Although amitriptyline is widely used to manage CP, its immunomodulatory effects during pain therapy, especially on T cell phenotypes, remain unclear. In this study, we explored how amitriptyline alters T cell phenotypes in CP patients.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, CHUV/UNIL, 1011, Lausanne, Switzerland.
Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).
View Article and Find Full Text PDFSemin Arthritis Rheum
August 2025
Grupo IRIDIS (Investigation in Rheumatology and Immune-Diseases), Instituto de Investigación Sanitaria Galicia Sur, (IISGS), Hospital Universitario Vigo, Vigo, Spain.
Introduction: Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disorder characterized by multi-organ involvement and variable clinical manifestations. Recurrent clinical patterns suggest distinct phenotypes, where cluster analysis of autoantibodies could identify prognostic subtypes.
Objectives: To define and describe serological clusters and their clinical-epidemiological characteristics, as well as their association with comorbidities, disease activity measures, severity, and damage.