Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480860PMC
http://dx.doi.org/10.1016/j.xgen.2024.100641DOI Listing

Publication Analysis

Top Keywords

transcriptomic atlas
8
colorectal cancer
8
transcript structures
8
mass spectrometry
8
spectrometry data
8
cancer
5
isoform-resolution transcriptomic
4
atlas colorectal
4
cancer long-read
4
long-read single-cell
4

Similar Publications

Whole blood (WB) transcriptomics offers a minimal-invasive method to assess patients' immune system. This study aimed to identify transcriptional patterns in WB associated with clinical outcomes in patients treated with immune checkpoint inhibitors (ICIs). We performed RNA-sequencing on pre-treatment WB samples from 145 patients with advanced cancer.

View Article and Find Full Text PDF

Atherosclerosis, a major cause of cardiovascular diseases, is characterized by the buildup of lipids and chronic inflammation in the arteries, leading to plaque formation and potential rupture. Despite recent advances in single-cell transcriptomics (scRNA-seq), the underlying immune mechanisms and transformations in structural cells driving plaque progression remain incompletely defined. Existing datasets often lack comprehensive coverage and consistent annotations, limiting the utility of downstream analyses.

View Article and Find Full Text PDF

Single-Cell Transcriptomic Profiling Reveals Diet-Dependent Dynamics of Glucosinolate Sulfatases Expression and Cellular Origin in the Midgut of Plutella xylostella.

Insect Biochem Mol Biol

September 2025

Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, College of Life Sciences, Gannan Normal University, Ganzhou 341000, China. Electronic address:

The diamondback moth (Plutella xylostella), a globally destructive pest, has Brassicaceae as its long-term co-evolved host and can also utilize Fabaceae as an alternative field host. The primary differential factor between these plant families is glucosinolates (GLs). Conventional transcriptome data revealed high midgut expression of glucosinolate sulfatases (GSSs) in response to glucosinolates.

View Article and Find Full Text PDF

The effect of recurrent seizures on the gradual deterioration of the white matter structural network and the potential molecular mechanisms that underlie the baseline and longitudinal changes in network topology in temporal lobe epilepsy (TLE) remain unclear. Therefore, we used diffusion tensor imaging (DTI) scans and neuropsychiatric assessments for 28 patients with unilateral TLE at baseline and follow-up, and for 28 healthy controls (HC). The topological properties of the structural network were calculated using graph theoretical analyses.

View Article and Find Full Text PDF

Identifying ARRB2 as a Prognostic Biomarker and Key Player in the Tumor Microenvironment of Pancreatic Cancer through scPagwas Methodology.

Curr Gene Ther

September 2025

Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.

Introduction: Pancreatic Cancer (PC) is recognized as a highly aggressive malignancy and is anticipated to become the second leading cause of cancer-associated deaths across the United States by 2030. Owing to its late-stage diagnosis and the substantial risk of metastasis, current therapeutic strategies exhibit limited efficacy, resulting in a five-year survival rate below 10%. Consequently, identifying reliable biomarkers and therapeutic approaches remains imperative for enhancing treatment effectiveness.

View Article and Find Full Text PDF