98%
921
2 minutes
20
This paper addresses the tracking control problem of nonlinear discrete-time multi-agent systems (MASs). First, a local neighborhood error system (LNES) is constructed. Then, a novel tracking algorithm based on asynchronous iterative Q-learning (AIQL) is developed, which can transform the tracking problem into the optimal regulation of LNES. The AIQL-based algorithm has two Q values Q and Q for each agent i, where Q is used for improving the control policy and Q is used for evaluating the value of the control policy. Moreover, the convergence of LNES is given. It is shown that the LNES converges to 0 and the tracking problem is solved. A neural network-based actor-critic framework is used to implement AIQL. The critic network of AIQL is composed of two neural networks, which are used for approximating Q and Q respectively. Finally, simulation results are given to verify the performance of the developed algorithm. It is shown that the AIQL-based tracking algorithm has a lower cost value and faster convergence speed than the IQL-based tracking algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2024.106667 | DOI Listing |
BMC Ecol Evol
September 2025
Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.
Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.
View Article and Find Full Text PDFJ R Soc Interface
September 2025
Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, Île-de-France, France.
A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up.
View Article and Find Full Text PDFJ Neural Eng
September 2025
University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania, 19104-6243, UNITED STATES.
New implantable and wearable devices hold great promise to help patients manage their seizure disorders. One proposed application is measuring the rate of interictal epileptiform discharges as a biomarker of medication levels and seizure risk. This study aims to determine whether interictal epileptiform spike rates (spikes) are independently associated with anti-seizure medication (ASM) levels and evaluate whether spike rates are a reliable biomarker for ASM levels.
View Article and Find Full Text PDFJMIR Form Res
September 2025
Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatrics Institute, No. 106, Zhongshaner Rd, Guangzhou, 510080, China, 86 15920151904.
Background: Point-of-care ultrasonography has become a valuable tool for assessing diaphragmatic function in critically ill patients receiving invasive mechanical ventilation. However, conventional diaphragm ultrasound assessment remains highly operator-dependent and subjective. Previous research introduced automatic measurement of diaphragmatic excursion and velocity using 2D speckle-tracking technology.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Dipartimento di Fisica, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, Rome 00185, Italy.
The equilibration dynamics of ultrastable glasses subjected to heating protocols has attracted recent experimental and theoretical interest. With simulations of the mW water model, we investigate the devitrification and "melting" dynamics of both conventional quenched (QG) and vapor deposited (DG) amorphous ices under controlled heating ramps. By developing an algorithm to reconstruct hydrogen-bond networks, we show that bond ring statistics correlate with the structural stability of the glasses and allow tracking crystalline and liquid clusters during devitrification and melting.
View Article and Find Full Text PDF