Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Mitochondria are known to synthesize adenosine triphosphate (ATP) through oxidative phosphorylation. Understanding and accurately measuring mitochondrial ATP synthesis rate can provide insights into the functional status of mitochondria and how it contributes to overall cellular energy homeostasis. Traditional methods only estimate mitochondrial function by measuring ATP levels at a single point in time or through oxygen consumption rates. This study introduced the relative mitochondrial ATP synthesis response against inhibiting and stimulating substrates (MitoRAISE), designed to detect real-time changes in ATP levels as the cells respond to substrates.

Methods: The sensitivity and specificity of the MitoRAISE assay were verified under various conditions, including the isolation of mitochondria, variations in cell numbers, cells exhibiting mitochondrial damage, and heterogeneous mixtures. Using peripheral blood mononuclear cells (PBMCs), we analyzed MitoRAISE data from 19 patients with breast cancer and 23 healthy women.

Results: The parameters observed in the MitoRAISE data increased depending on the quantity of isolated mitochondria and cell count, whereas it remained unmeasured in mitochondrial-damaged cell lines. Basal ATP, rotenone response, malonate response, and mitochondrial DNA copy numbers were lower in PBMCs from patients with breast cancer than in those from healthy women.

Conclusions: The MitoRAISE assay has demonstrated its sensitivity and specificity by measuring relative ATP synthesis rates under various conditions. We propose MitoRAISE assay as a potential tool for monitoring changes in the mitochondrial metabolic status associated with various diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363686PMC
http://dx.doi.org/10.1186/s40170-024-00353-3DOI Listing

Publication Analysis

Top Keywords

atp synthesis
16
mitochondrial atp
12
mitoraise assay
12
relative mitochondrial
8
atp
8
synthesis response
8
response inhibiting
8
inhibiting stimulating
8
stimulating substrates
8
substrates mitoraise
8

Similar Publications

A water-soluble NIR-II fluorescent probe for non-invasive real-time detection of blood ATP optoacoustic and fluorescence imaging.

J Mater Chem B

September 2025

State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.

Adenosine triphosphate (ATP) is a critical biomolecule in cellular energy metabolism, with abnormal levels in the bloodstream linked to pathological conditions such as ischemia, cancer, and inflammatory disorders. Accurate and real-time detection of ATP is essential for early diagnosis and disease monitoring. However, conventional biochemical assays and other techniques suffer from limitations, including invasive sample collection, time-consuming procedures, and the inability to provide dynamic, monitoring.

View Article and Find Full Text PDF

Recent evidence indicates that the concentration of ATP remains stable during neuronal activity due to activity-dependent ATP production. However, the mechanisms of activity-dependent ATP production remain controversial. To stabilize the ATP concentration, feedforward mechanisms, which may rely on calcium or the sodium-potassium pump, do not require changes in the ATP and ADP concentrations.

View Article and Find Full Text PDF

The ectoparasitic honeybee (Apis mellifera) mite Tropilaelaps mercedesae represents a serious threat to Asian apiculture and a growing concern for global beekeeping due to its high reproductive capacity and host adaptability. However, the regulatory mechanisms underlying its host adaptation across life stages remain poorly characterized. Here, we performed integrated transcriptomic, proteomic, and metabolomic analyses of female mites at 4 key postembryonic developmental stages: protonymphs, deutonymphs, mature adults, and reproductive adults.

View Article and Find Full Text PDF

[Avitinib suppresses NLRP3 inflammasome activation and ameliorates septic shock in mice].

Nan Fang Yi Ke Da Xue Xue Bao

August 2025

Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China.

Objectives: To investigate the effect of avitinib for suppressing NLRP3 inflammasome activation and alleviating septic shock and explore the underlying mechanism.

Methods: Mouse bone marrow-derived macrophages (BMDM), human monocytic leukemia cell line THP-1, and peripheral blood mononuclear cells (PBMC) isolated from healthy volunteers were pre-treated with avitinib, followed by activation of the canonical NLRP3 inflammasome using agonists including nigericin, monosodium urate (MSU) crystals, or adenosine triphosphate (ATP). Non-canonical NLRP3 inflammasome activation was induced intracellular transfection of lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Regeneration of infected bone defects (IBDs) requires biomaterials capable of dynamically coordinating antimicrobial, anti-inflammatory, and osteogenic functions. Overcoming the spatiotemporal mismatches in treating IBDs remains a critical challenge. Here, we designed a temporally controlled therapy based on gelatin methacrylate (GelMA)-based nanocomposite hydrogels (GCS) coembedded with sulfur quantum dots (SQDs) nanoenzymes and calcium-phosphorus oligomers (CPOs.

View Article and Find Full Text PDF