Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Endogenous viral elements (EVEs) have been reported to exist widely in the genomes of eukaryotic organisms, and they are closely associated with the growth, development, genetics, adaptation, and evolution of their hosts. In this study, two methods-homologous sequence search and genome alignment-were used to explore the endogenous viral sequences in the genomes of species. Results revealed abundant endogenous pararetroviruses (EPRVs) in the genomes of species, including 786 sequences belonging to five known taxa such as and other unclassified taxa. Differences were observed in the detected EPRVs between the two methods, with the homologous sequence search having a greater number of EPRVs. On the contrary, genome alignment identified various types and sources of virus-like sequences. Furthermore, through genome alignment, a 267-bp sequence with 95% similarity to the gene encoding the aphid-transmitted protein of () was discovered in the genome, which was likely a recent insertion. In addition, the statistical analysis of the genome alignment results indicated a remarkably higher abundance of virus-like sequences in the genomes of polyploid strawberries compared with diploid ones. Moreover, the differences in virus-like sequences were observed between the genomes of species and those of their close relatives. This study enriched the diversity of viruses that infect strawberries, and laid a theoretical foundation for further research on the origin of endogenous viruses in the strawberry genome, host-virus interactions, adaptation, evolution, and their functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359110PMC
http://dx.doi.org/10.3390/v16081306DOI Listing

Publication Analysis

Top Keywords

genomes species
12
genome alignment
12
virus-like sequences
12
endogenous viruses
8
viruses strawberry
8
endogenous viral
8
adaptation evolution
8
sequence search
8
sequences genomes
8
genome
6

Similar Publications

Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.

View Article and Find Full Text PDF

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

The sensing of Gram-negative Extracellular Vesicles (EVs) by the innate immune system has been extensively studied in the past decade. In contrast, recognition of Gram-positive EVs by innate immune cells remains poorly understood. Comparative genome-wide transcriptional analysis in human monocytes uncovered that S.

View Article and Find Full Text PDF

Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.

NPJ Biofilms Microbiomes

September 2025

Research Group Medical Systems Biology, University Hospital Schleswig-Holstein Campus Kiel, 24105 Kiel University, Kiel, Schleswig-Holstein, Germany.

Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI.

View Article and Find Full Text PDF

Unravelling novel microbial players in the breast tissue of TNBC patients: a meta-analytic perspective.

NPJ Biofilms Microbiomes

September 2025

Bioinformatics Group, Centre for Informatics Science (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt.

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC), accounting for nearly 40% of BC-related deaths. Emerging evidence suggests that the breast tissue microbiome harbors distinct microbial communities; however, the microbiome specific to TNBC remains largely unexplored. This study presents the first comprehensive meta-analysis of the TNBC tissue microbiome, consolidating 16S rRNA amplicon sequencing data from 200 BC samples across four independent cohorts.

View Article and Find Full Text PDF