98%
921
2 minutes
20
High-mountain water bodies represent critical components of their ecosystems, serving as vital freshwater reservoirs, environmental regulators, and sentinels of climate change. To understand the environmental dynamics of these regions, comprehensive analyses of lakes across spatial and temporal scales are necessary. While remote sensing offers a powerful tool for lake monitoring, applications in high-mountain terrain present unique challenges. The Ancash and Cuzco regions of the Peruvian Andes exemplify these challenges. These regions harbor numerous high-mountain lakes, which are crucial for fresh water supply and environmental regulation. This paper presents an exploratory examination of remote sensing techniques for lake monitoring in the Ancash and Cuzco regions of the Peruvian Andes. The study compares three deep learning models for lake segmentation: the well-established DeepWaterMapV2 and WatNet models and the adapted WaterSegDiff model, which is based on a combination of diffusion and transformation mechanisms specifically conditioned for lake segmentation. In addition, the Normalized Difference Water Index (NDWI) with Otsu thresholding is used for comparison purposes. To capture lakes across these regions, a new dataset was created with Landsat-8 multispectral imagery (bands 2-7) from 2013 to 2023. Quantitative and qualitative analyses were performed using metrics such as Mean Intersection over Union (MIoU), Pixel Accuracy (PA), and F1 Score. The results achieved indicate equivalent performance of DeepWaterMapV2 and WatNet encoder-decoder architectures, achieving adequate lake segmentation despite the challenging geographical and atmospheric conditions inherent in high-mountain environments. In the qualitative analysis, the behavior of the WaterSegDiff model was considered promising for the proposed application. Considering that WatNet is less computationally complex, with 3.4 million parameters, this architecture becomes the most pertinent to implement. Additionally, a detailed temporal analysis of Lake Singrenacocha in the Vilcanota Mountains was conducted, pointing out the more significant behavior of the WatNet model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360623 | PMC |
http://dx.doi.org/10.3390/s24165177 | DOI Listing |
Environ Monit Assess
September 2025
Department of Forestry Engineering, Federal University of Lavras (UFLA), Lavras, Minas Gerais State, Brazil.
In general, species on our planet are adapted to phenological patterns of vegetation, which are strongly influenced by various climatic and environmental factors that, when altered, can threaten biodiversity. Recent studies have utilized the spatiotemporal variability of vegetation to understand its dynamics, directly affecting biodiversity. Therefore, this research aimed to generate indices of temporal variability considering vegetation phenology and indices of spatial variability of vegetation to subsequently identify priority areas for biodiversity conservation in the Cerrado and Caatinga regions in Minas Gerais State, Brazil.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Sleman, Yogyakarta, DIY, 55281, Indonesia.
Understanding seagrass dynamics is crucial for the effective management and conservation of seagrass meadows. However, such information remains limited for many regions worldwide, including Kuta Mandalika on Lombok Island, Indonesia. This rapidly developing coastal area, which is home to both tourism infrastructure and an international race circuit, hosts extensive seagrass meadows whose condition and dynamics require careful assessment.
View Article and Find Full Text PDFNat Plants
September 2025
Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, School of Atmospheric Sciences, School of Ecology, Sun Yat-sen University, Zhuhai, China.
Increasing leaf area and extending vegetation growing seasons are two primary drivers of global greening, which has emerged as one of the most significant responses to climate change. However, it remains unclear how these two leaf acclimation strategies would vary across forests at a large spatial scale. Here, using multiple satellite-based datasets and field measurements, we analysed the temporal changes (Δ) in maximal leaf area index (LAI) and length of the growing season (LOS) from 2002 to 2021 across deciduous broadleaf forests (DBFs) in the middle to high latitudes.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Division of Sleep Medicine, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States; Division of Pulmonary, Critical Care, and Sleep Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, United States; Department of Medicine, Case Western Reserve University, Clevelan
Obstructive sleep apnea (OSA) is a pervasive disorder characterized by recurrent airway obstructions during sleep. OSA carries serious health risks, such as cardiovascular and cognitive impairments, and imposes a significant economic burden. This chapter provides a comprehensive overview of various biosensors currently employed for OSA detection, including in-lab polysomnography and flow-based home sleep apnea testing.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
Background: Soil-transmitted helminth (STH) infections remain a public health problem in Uganda despite biannual national deworming campaigns implemented since the early 2000s. Recent surveys have indicated a heterogeneous STH infection prevalence, suggesting that the current blanket deworming strategy may no longer be cost-effective. This study identified infection predictors, estimated the geographic distribution of STH infection prevalence by species, and calculated deworming needs for school-age children (SAC).
View Article and Find Full Text PDF