Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: A major factor in type 1 diabetes mortality is Ischemic Heart Disease (IHD). In order to treat IHD, blood flow must be restored to the heart, which results in myocardial ischemia-reperfusion (MI/R) damage. While rosmanol inhibits MI/R damage, its role in diabetic- MI/R (D-MI/R) injury remains unclear. Both microRNA (miR) 126 and the PI3K/AKT signaling pathway have been linked to preventing MI/R damage.

Objective: The objective of the present study was to investigate whether rosmanol inhibits DMI/ R-injury in diabetic rats and whether miR-126-phosphatidylinositol 3-kinase (PI3K)/ protein kinase B axis (miR-126-PI3K/AKT) is implicated in this protective effect.

Methods: For 30 days, diabetic rats received either distilled water or the drug rosmanol (40 mg/kg, orally) before being subjected to MI/R.

Results: The findings from the current study demonstrated how rosmanol reduced MI/R damage in rats with diabetes caused by streptozotocin (STZ). Using spectrophotometry, it was possible to measure the decrease in myocardial enzyme levels, the rise in cardiac viability, the inhibition of myocardial oxidative stress, the increase in cardiac function, and the detection of these changes using a hemodynamic monitoring system. In addition, rosmanol augmented the miR- 126-PI3K/AKT in the hearts of ischemic rats. After stimulating the myocardial miR-126- PI3K/AKT axis, our results showed that rosmanol protected the heart against MI/R in STZinduced diabetic rats.

Conclusion: According to the most recent research, rosmanol may be a useful tool in the therapy of diabetic IHD since it is an effective agent against D-MI/R damage.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113862073285839240808113152DOI Listing

Publication Analysis

Top Keywords

diabetic rats
12
mi/r damage
12
rosmanol
8
myocardial ischemia-reperfusion
8
rosmanol inhibits
8
myocardial
6
mi/r
6
diabetic
5
rats
5
rosmanol alleviates
4

Similar Publications

The adverse effects of Western diets (WD), high in both fat and simple sugars, which contribute to obesity and related disorders, have been extensively studied in laboratory rodents, but not in non-laboratory animals, which limits the scope of conclusions. Unlike laboratory mice or rats, non-laboratory rodents that reduce body mass for winter do not become obese when fed a high-fat diet. However, it is not known whether these rodents are also resistant to the adverse effects of WD.

View Article and Find Full Text PDF

Background: Diabetic retinopathy (DR) is a major complication of diabetes mellitus, characterised by retinal vasculopathy and oxidative stress. Semaglutide, a glucagon-like peptide-1 receptor agonist (GLP-1RA), has demonstrated cardiovascular benefits but has also been associated with mixed effects on DR progression. This study investigates the potential of semaglutide to attenuate DR progression by ameliorating retinal vasculopathy and oxidative stress in both in vivo and in vitro models.

View Article and Find Full Text PDF

Ultrasound-Stimulated BMSCs Promote Regenerative Healing in Refractory Foot Ulcer by Paracrine Effect.

Ultrasound Med Biol

September 2025

State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China. Electronic address:

Objective: Diabetic foot ulcer (DFU) is a common and serious complication of diabetes, often leading to infection, amputation and poor quality of life. Bone marrow mesenchymal stem cells (BMSCs) have shown promise in treating chronic wounds, but their therapeutic efficacy is limited due to poor survival and low regenerative activity. Low-intensity pulsed ultrasound (LIUS), a non-invasive physical modality, has been shown to enhance the biological behavior of BMSCs.

View Article and Find Full Text PDF

Chronic wounds, particularly in diabetic patients, are characterized by prolonged inflammation, impaired angiogenesis, and delayed tissue regeneration. To address these challenges, the author developed a bioactive scaffold by incorporating quercetin nanoparticles (Qn) into a chitosan/silk fibroin (ChS) matrix, aiming to accelerate and enhance the wound healing process. Quercetin nanoparticles were synthesized via a solvent displacement method and incorporated into a ChS scaffold using a blending and freeze-drying technique.

View Article and Find Full Text PDF

Hepatic ischaemia-reperfusion (IR) injury is a serious clinical issue, especially in patients with type 2 diabetes mellitus (T2DM). As mitochondria play a critical role in the regulation of IR-induced liver damage, mitochondria-targeted treatment is of the utmost significance for improving outcomes. The present study explored the mitoprotective role of combined ginsenoside-MC1 (GMC1) and irisin administration in diabetic rats with hepatic IR injury.

View Article and Find Full Text PDF