98%
921
2 minutes
20
The ketogenic diet (KD) is marked by a substantial decrease in carbohydrate intake and an elevated consumption of fats and proteins, leading to a metabolic state referred to as "ketosis," where fats become the primary source of energy. Recent research has underscored the potential advantages of the KD in mitigating the risk of various illnesses, including type 2 diabetes, hyperlipidemia, heart disease, and cancer. The macronutrient distribution in the KD typically entails high lipid intake, moderate protein consumption, and low carbohydrate intake. Restricting carbohydrates to below 50 g/day induces a catabolic state, prompting metabolic alterations such as gluconeogenesis and ketogenesis. Ketogenesis diminishes fat and glucose accumulation as energy reserves, stimulating the production of fatty acids. Neurodegenerative diseases, encompassing Alzheimer's disease, Parkinson's disease are hallmarked by persistent neuroinflammation. Evolving evidence indicates that immune activation and neuroinflammation play a significant role in the pathogenesis of these diseases. The protective effects of the KD are linked to the generation of ketone bodies (KB), which play a pivotal role in this dietary protocol. Considering these findings, this narrative review seeks to delve into the potential effects of the KD in neuroinflammation by modulating the immune response. Grasping the immunomodulatory effects of the KD on the central nervous system could offer valuable insights into innovative therapeutic approaches for these incapacitating conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345202 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1425816 | DOI Listing |
J Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Department of Pharmacology, SVKM's Dr Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India.
This study aimed to evaluate the antidepressant potential of Nitazoxanide (NTZ), an antiprotozoal drug with known anti-inflammatory and neuroprotective properties, in a chronic unpredictable mild stress (CUMS)-induced mice model of depression. NTZ was administered at doses of 75, 150, and 300 mg/kg, and its effects were assessed through a series of behavioral tests, including the forced swim test, tail suspension test, actophotometer test, and social interaction test. NTZ treatment at 150 and 300 mg/kg significantly improved behavioral and biochemical outcomes, relieving depressive-like symptoms and restoring neurochemical balance.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2025
University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.
Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.
View Article and Find Full Text PDF