98%
921
2 minutes
20
Structural regulation of Pd-based electrocatalytic hydrodechlorination (EHDC) catalyst for constructing high-efficient cathode materials with low noble metal content and high atom utilization is crucial but still challenging. Herein, a support electron inductive effect of Pd-Mn/Ni foam catalyst was proposed via in-situ Mn doping to optimize the electronic structure of the Ni foam (NF), which can inductive regulation of Pd for improving the EHDC performance. The mass activity and current efficiency of Pd-Mn/NF catalyst are 2.91 and 1.34 times superior to that of Pd/NF with 2,4-dichlorophenol as model compound, respectively. The Mn-doped interlayer optimized the electronic structure of Pd by bringing the d-state closer to the Fermi level than Pd on the NF surface, which optimizied the binding of EHDC intermediates. Additionally, the Mn-doped interlayer acted as a promoter for generating H* and accelerating the EHDC reaction. This work presents a simple and effective regulation strategy for constructing high-efficient cathode catalyst for the EHDC of chlorinated organic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2024.01.053 | DOI Listing |
Bioresour Technol
September 2025
Bioengineering Department, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Mexico City 07340, Mexico. Electronic address:
In this study a methodology to elucidate metabolic interactions that enhance hydrogen (H) production in cocultures under nongrowing conditions is presented. Core metabolic models of Rhodopseudomonas palustris and Clostridium butyricum were integrated to perform a multispecies metabolic flux analysis (mMFA), constrained by experimentally measured yields. Flux distributions were clustered, and thermodynamically favorable solutions were identified.
View Article and Find Full Text PDFNeuropharmacology
September 2025
College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China. Electronic address:
Aim Of The Study: This study aimed to investigate the protective effects of Geniposide (GEN) against cerebral ischemia-reperfusion injury by targeting the cGAS-STING pathway and modulating autophagy in neuronal cells.
Materials And Methods: In vivo middle cerebral artery occlusion/reperfusion (MCAO/R) model and an in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model to mimic the pathology of cerebral ischemic stroke in humans. Behavioral tests, tissue staining to assess neurological deficits and tissue damage in mice.
Water Res
August 2025
State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
Catalysts for heterogeneous advanced oxidation processes (AOPs) in water remediation face environmental sustainability challenges, due to the intensive production of catalysts and limited stability of catalysts while maintaining high efficiency. Herein, we design a biomimetic carbon catalyst (BCC) inspired by the diatom frustule valve structure, achieving high environmental sustainability while maintaining superior water decontamination performance by a non-radical direct electron transfer (DET) pathway through activating peracetic acid (PAA). Utilizing a hydrogen-bonding strategy, BCC features pillared layered hierarchical pores with an ultrahigh specific surface area of 2710.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea. Electronic address:
Alzheimer's disease (AD) is marked by amyloid-beta (Aβ) plaque buildup, tau hyperphosphorylation, neuroinflammation, neuronal loss, and impaired adult hippocampal neurogenesis (AHN). Taurine has shown protective effects in various cellular and animal models of AD, though the molecular mechanisms of free taurine and its effects in patient-derived models remain underexplored. This study evaluates taurine's therapeutic potential using integrated in silico, in vitro, in vivo, and ex vivo approaches.
View Article and Find Full Text PDFUltramicroscopy
August 2025
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, 1304W. Green Street, Urbana 61801, IL, USA; Materials Research Laboratory, University of Illinois at Urbana-Champaign, 104 South Goodwin Avenue, Urbana 61801, IL, USA. Electronic address:
Complex face-centered-cubic (FCC) alloys frequently display chemical short-range ordering (CSRO), which can be detected through the analysis of diffuse scattering. However, the interpretation of diffuse scattering is complicated by the presence of defects and thermal diffuse scattering, making it extremely challenging to distinguish CSRO using conventional scattering techniques. This complexity has sparked intense debates regarding the origin of specific diffuse-scattering signals, such as those observed at 1/3{422} and 1/2{311} positions.
View Article and Find Full Text PDF