98%
921
2 minutes
20
Background: While calcium is known to play a crucial role in mammalian sperm physiology, how it flows in and out of the male gamete is not completely understood. Herein, we investigated the involvement of Na/Ca exchangers (NCX) in mammalian sperm capacitation. Using the pig as an animal model, we first confirmed the presence of NCX1 and NCX2 isoforms in the sperm midpiece. Next, we partially or totally blocked Ca outflux (forward transport) via NCX1/NCX2 with different concentrations of SEA0400 (2-[4-[(2,5-difluorophenyl)methoxy]phenoxy]-5-ethoxyaniline; 0, 0.5, 5 and 50 µM) and Ca influx (reverse transport) with SN6 (ethyl 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-1,3-thiazolidine-4-carboxylate; 0, 0.3, 3 or 30 µM). Sperm were incubated under capacitating conditions for 180 min; after 120 min, progesterone was added to induce the acrosome reaction. At 0, 60, 120, 130, and 180 min, sperm motility, membrane lipid disorder, acrosome integrity, mitochondrial membrane potential (MMP), tyrosine phosphorylation of sperm proteins, and intracellular levels of Ca, reactive oxygen species (ROS) and superoxides were evaluated.
Results: Partial and complete blockage of Ca outflux and influx via NCX induced a significant reduction of sperm motility after progesterone addition. Early alterations on sperm kinematics were also observed, the effects being more obvious in totally blocked than in partially blocked samples. Decreased sperm motility and kinematics were related to both defective tyrosine phosphorylation and mitochondrial activity, the latter being associated to diminished MMP and ROS levels. As NCX blockage did not affect the lipid disorder of plasma membrane, the impaired acrosome integrity could result from reduced tyrosine phosphorylation.
Conclusions: Inhibition of outflux and influx of Ca triggered similar effects, thus indicating that both forward and reverse Ca transport through NCX exchangers are essential for sperm capacitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11342557 | PMC |
http://dx.doi.org/10.1186/s40659-024-00535-9 | DOI Listing |
Nature
September 2025
Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
Loss-of-function variants in the lipid transporter ABCA7 substantially increase the risk of Alzheimer's disease, yet how they impact cellular states to drive disease remains unclear. Here, using single-nucleus RNA-sequencing analysis of human brain samples, we identified widespread gene expression changes across multiple neural cell types associated with rare ABCA7 loss-of-function variants. Excitatory neurons, which expressed the highest levels of ABCA7, showed disrupted lipid metabolism, mitochondrial function, DNA repair and synaptic signalling pathways.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Department of Physics, Xiamen University, xiamen, Xiamen, Fujian, 361005, CHINA.
Thermal rectification, arising from asymmetric heat transport under opposite temperature gradients, is essential for thermal management in electronics. We present a generalized optimization strategy for two-segment rectifiers based on Fourier's law, showing that the rectification ratio $R$, defined as the forward-to-reverse heat flux ratio, is maximized when the interface temperatures coincide in both directions. By expressing $R$ as a function of interface temperature and extending the analysis to arbitrary temperature-dependent thermal conductivities $\kappa(T)$, we develop an analytical framework to optimize rectifiers with dissimilar segments.
View Article and Find Full Text PDFNeuro Endocrinol Lett
September 2025
Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
Background: Major depressive disorder (MDD) is associated with neuro-immune - metabolic - oxidative (NIMETOX) pathways.
Aims: To examine the connections among NIMETOX pathways in outpatient MDD (OMDD) with and without metabolic syndrome (MetS); and to determine the prevalence of NIMETOX aberrations in a cohort of OMDD patients.
Methods: We included 67 healthy controls and 66 OMDD patients and we assessed various NIMETOX pathways.
Phys Rev Lett
August 2025
Nanjing University, National Laboratory of Solid State Microstructures, Institute of Brain-Inspired Intelligence, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
The anomalous metal state (AMS), observed in "failed" superconductors, provides insights into superconductivity and quantum criticality, with studies revealing unconventional quantum phases like the Bose metal. Recently, layered transition metal dichalcogenide (TMD) superconductors approaching the two-dimensional limit have garnered significant attention for the enhanced phase fluctuations and electronic correlations. Investigating AMSs in these systems, particularly in the absence of an external magnetic field, could offer valuable insights into the dimensionality-driven emergence of exotic quantum phenomena, including triplet Cooper pairing, phase fluctuation dynamics, and especially the recently discovered field-free superconducting diode effects.
View Article and Find Full Text PDFSmall
September 2025
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
Artificial porous polymer coatings are promising for alleviating the side reactions and dendrite growth on Zn anodes. Nevertheless, the low ion transport ability constrains their application under harsh conditions such as thin Zn foil, high current density, and high depth of discharge (DOD). Herein, a 2D active filler is introduced to optimize the Zn migration in porous polymer coating.
View Article and Find Full Text PDF