98%
921
2 minutes
20
A simple, selective, and affordable dual fluorescence-colorimetric indicator for hydrogen sulfide was developed based on a complex of copper nanoparticles and N-doped carbon quantum dots (CuNPs/NCQDs). Real-time and visual freshness tracking of fish was done using a colorimetric indicator by incorporating CuNPs/NCQDs into agar hydrogel (AH-CuNPs/NCQDs). The fluorescence response of the CuNPs/NCQDs solution is quenched upon exposure to HS. The field-emission scanning electron microscopy image of the AH-CuNPs/NCQDs film revealed a unified structure. The prepared indicator exhibited a good and irreversible response to HS, with a LOD of 91.36 and a LOQ of 276.86 μM, based on the localized surface plasmon resonance (LSPR) mechanism. The X-ray photoelectron spectrometer and Fourier transform infrared spectrometer results confirmed the formation of a CuS bond in the colorimetric indicator exposed to fish spoilage. The prepared indicator demonstrated good stability and remained unaffected by pH or other volatile compounds. Notably, there was a strong correlation between ΔΕ and fish freshness parameters (pH, TV-BN, and TVC). Light green, pale yellow, and dark yellow colors, respectively, indicated freshness, semi-freshness, and spoilage of fish during storage in the refrigerator. Overall, the prepared indicator can be effectively used for detecting spoilage in meat products as a highly sensitive freshness indicator.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122477 | DOI Listing |
Mikrochim Acta
September 2025
Department of Surgical Oncology, Shaanxi Provincial People's Hospital, 256 Friendship West Road, Beilin District, Xi'an, 710068, Shaanxi, China.
Mycoplasma pneumonia, a primary aetiological agent of atypical pneumonia, necessitates the implementation of rapid point-of-care diagnostics. Lateral flow immunoassays (LFIAs) hold promise for point-of-care testing (POCT), yet their sensitivity levels are frequently constrained by probe affinity and matrix interference. We introduce an orientational labelling strategy that employs magnetic nanoparticles (MNPs) functionalized with staphylococcal protein A (SPA) to simultaneously enhance antibody orientation and facilitate magnetic enrichment.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Department of Analytical Chemistry, China Pharmaceutical University, 24 TongJiaXiang, Nanjing, 210009, Jiangsu, China.
A nanozyme-mediated cascade reaction system for fluorometric and colorimetric dual-mode detection of sarcosine (SA) was developed. The nanozymes (Zn-Glu@Hemin) were synthesized via a rapid self-assembly within 10 min at room temperature. Importantly, the Zn-Glu@Hemin exhibited strong peroxidase (POD)-mimicking activity, catalyzing the generation of hydroxyl radical (·OH) and superoxide anion (O) from hydrogen peroxide (HO), enhancing the fluorescence reaction of o-phenylenediamine (OPD) and the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB).
View Article and Find Full Text PDFAnal Chim Acta
November 2025
School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of A
Background: Copper is a vital trace element that plays a crucial role in various physiological processes due to its ability to exist in multiple oxidation states. Inspired by natural enzymes, researchers have developed copper-based nanozymes that mimic enzyme functions, offering cost-effective and stable alternatives to traditional enzymes. Despite their promising properties, the design and synthesis of these nanozymes can be complex and challenging.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:
Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.
View Article and Find Full Text PDF