98%
921
2 minutes
20
Key Points: We generated a transgenic mouse model expressing the human IgA1 heavy chain, which has a hinge region with rich -linked glycosylation. After inflammatory stimulation, the mouse model showed elevated galactose-deficient IgA1 levels in the serum. Coupled with complement H factor mutant, the mice model exhibited glomerular lesions, associated with hematuria and albuminuria like IgA nephropathy.
Background: IgA nephropathy is the most common primary glomerulonephritis worldwide, and there is emerging evidence linking galactose-deficient IgA1 (Gd-IgA1) to the pathogenesis of the disease. However, mouse models that can be used to study Gd-IgA1's origin of production, biochemical characteristics, and immune reactivity are lacking.
Methods: We generated a humanized IgA1 mouse model with transgenic expression of the human gene from the mouse chromosomal locus of IgA heavy chain. The mice were crossed with complement factor H heterozygous mutant (FH) to generate FH mice. mice were exposed to different levels of environmental pathogens in the first 4 months, as housed in germ-free, specific pathogen–free, or conventional environments. In addition, wild-type C57BL/6J mice, mice, and FH mice were inoculated with cell wall extract (LCWE) mixed with complete Freund's adjuvant (CFA) at 2 months of age to develop a mouse model of IgA nephropathy.
Results: Elevated levels of human IgA1 in blood circulation and mucosal sites were observed in mice from exposure to pathogens. Compared with buffer-treated control mice, LCWE plus CFA-treated mice had moderately elevated levels of circulating human IgA1 (by one-fold) and human IgA1 immune complexes (by two-fold). Serum Gd-IgA1 levels increased four-fold after LCWE treatments. Analyses of the -glycopeptides of the IgA1 hinge region confirmed hypogalactosylation of IgA1, with the variety of the glycoforms matching those seen in clinical samples. Furthermore, LCWE induced persistent IgA1 and C3 deposition in the glomerular mesangial areas in association with mesangial expansion and hypercellularity, which are frequently observed in IgA nephropathy biopsies. The IGHA1FH mice stimulated with LCWE and CFA developed albuminuria and hematuria.
Conclusions: We observed elevated plasma Gd-IgA1 levels with kidney deposition of IgA1 in the mice after LCWE and CFA. In conjunction with factor H mutation, the mice exhibited severe glomerular alterations, associated with hematuria and albuminuria in resemblance of clinical IgA nephropathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706567 | PMC |
http://dx.doi.org/10.1681/ASN.0000000000000465 | DOI Listing |
Int J Gen Med
September 2025
Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.
Purpose: The fourth most common cause of cancer-related deaths in women is cervical cancer. Though treatment of early-stage cervical cancer is often effective, middle and advanced stage cervical cancer is hard to treat and prone to recurrence. We sought to explore the mechanism underlying cervical cancer progression to identify new therapeutic approaches.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Eisai Co., Ltd., Tsukuba Research Laboratories, 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
Liver-humanized chimeric mice (PXB-mice) are widely utilized for predicting human pharmacokinetics (PK) and as human disease models. However, residual metabolic activity of mouse hepatocytes in chimeric mice can interfere with accurate human PK estimation. Lipid nanoparticle (LNP)-formulated small interfering RNA (siRNA) treatment makes it possible to eliminate the shortcomings of chimeras and create new models.
View Article and Find Full Text PDFBME Front
September 2025
State Key Laboratory of High Performance Ceramics, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening.
View Article and Find Full Text PDFFront Immunol
September 2025
Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
NSG-SGM3 humanized mouse models are well-suited for studying human immune physiology but are technically challenging and expensive. We previously characterized a simplified NSG-SGM3 mouse, engrafted with human donor CD34 hematopoietic stem cells without receiving prior bone marrow ablation or human secondary lymphoid tissue implantation, that still retains human mast cell- and basophil-dependent passive anaphylaxis responses. Its capacities for human antibody production and human B cell maturation, however, remain unknown.
View Article and Find Full Text PDF