98%
921
2 minutes
20
Gelatin-based bioadhesives, especially methacrylated gelatin (GelMA), have emerged as superior alternatives to sutureless wound closure. Nowadays, their mechanical improvement and therapeutic delivery, particularly for hydrophobic antibiotics, have received ever-increasing interest. Herein, a reinforced gelatin-based hydrogel with a hydrophobic drug delivery property for skin wound treatment was reported. First, photosensitive monomers of '-(2-nitrobenzyl)--acryloyl glycinamide (NAGA) were grafted onto GelMA Michael addition, namely, GelMA-NAGA. Second, gelation of the GelMA-NAGA solution was accomplished in a few seconds under one step of ultraviolet (UV) light irradiation. Multiple effects were realized simultaneously, including chemical cross-linking initiated by lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), physical cross-linking of uncaged dual hydrogen bonding, and hydrophobic drug release along with group disintegration. The mechanical properties of the dual-reinforcement hydrogels were verified to be superior to those only with a chemical or physical single-cross-linked network. The hydrophobic anticancer doxorubicin (DOX) and antibiotic rifampicin (Rif) were successfully charged into the hydrogels, separately. The antimicrobial tests confirmed the antibacterial activity of the hydrogels against Gram-negative () and Gram-positive () bacteria. The wound-healing assessment in mice further assured their drug release and efficacy. Therefore, this NAGA-modified GelMA hydrogel has potential as a material in skin wound dressing with a hydrophobic antibiotic on-demand delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325409 | PMC |
http://dx.doi.org/10.1021/acsomega.4c01963 | DOI Listing |
J Am Chem Soc
September 2025
Center for Chemical Glycobiology, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
The ability to selectively cleave C-heteroatom bonds is critically important in chemical science, from peptide and protein synthesis to biomolecule manipulation. For example, C-heteroatom bond cleavage is widely used in fluorenylmethyloxycarbonyl/-butyl (Fmoc/Bu)-based solid-phase peptide synthesis (SPPS). Despite its usefulness, it has inextricable limitations, such as issues with hydrophobicity and side reactions, owing to the need for the use of a strong trifluoroacetic acid (TFA, a pervasive forever chemical) as the cleavage reagent.
View Article and Find Full Text PDFACS Omega
September 2025
Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, California 92121, United States.
Antibody-drug conjugates (ADCs) represent a transformative class of cancer therapies that combine the specificity of monoclonal antibodies with the cytotoxicity of potent drug payloads. This study presents the development and evaluation of a novel linker platform designed to enhance ADC stability and pharmacokinetics by addressing the limitations associated with traditional cleavable linkers. Using trastuzumab conjugated with a payload linker consisting of this platform and exo-EVC-Exatecan (APL-1082), we examined key parameters, including efficacy and pharmacokinetic profiles in rat models, to directly compare it with the clinically validated trastuzumab-deruxtecan (T-DXd, Enhertu).
View Article and Find Full Text PDFJ Pept Sci
October 2025
Institute of Technology, University of Tartu, Tartu, Estonia.
The development of therapeutic small interfering RNAs (siRNAs) has lately gained significant momentum due to their ability to silence genes in a highly specific manner. The main obstacle withholding the wider translation of siRNA-based drug modalities is their limited half-life and poor bioavailability, especially in extra-hepatic tissues. Consequently, various drug delivery systems (DDSs) have been developed to improve the delivery of siRNAs, including short delivery peptides called cell-penetrating peptides (CPPs).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Shandong Key Laboratory of Digital Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. Electronic address:
Hepatocellular carcinoma (HCC) poses a serious threat to human life and health. Nowadays, liver-targeting drug delivery systems have been proven as a promising strategy in treating HCC. Angelica sinensis polysaccharide (ASP), a plant polysaccharide with good biocompatibility, has excellent aqueous solubility and intrinsic liver-targeted capability.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:
The emergence of antimicrobial resistance poses significant challenges in conventional antibiotic treatments for chronic wound infections, highlighting an urgent need for alternative therapeutic strategies. To address this issue, we developed a multifunctional electrospun nanofiber dressing co-loaded with anthocyanin (ATH) and asiaticoside (AS) that possesses antimicrobial activity. The tri-layer dressing contains three functional components: a hydrophilic polyacrylonitrile-anthocyanin (PAN-ATH) layer for pH monitoring, a hydrophobic polycaprolactone (PCL) layer for exudate management, and a water-soluble pullulan-Bletilla striata polysaccharide-asiaticoside (PUL-BSP-AS) layer.
View Article and Find Full Text PDF