98%
921
2 minutes
20
Conventional drug delivery techniques face challenges related to targeting and adverse reactions. Recent years have witnessed significant advancements in nanoparticle-based drug carriers. Nevertheless, concerns persist regarding their safety and insufficient metabolism. Employing cells and their derivatives, such as cell membranes and extracellular vesicles (EVs), as drug carriers effectively addresses the challenges associated with nanoparticle carriers. However, an essential hurdle remains in efficiently loading drugs into these carriers. With the advancement of microfluidic technology and its advantages in precise manipulation at the micro- and nanoscales, as well as minimal sample loss, it has found extensive application in the loading of drugs using cells and their derivatives, thereby fostering the development of drug-loading techniques. This paper outlines the characteristics and benefits of utilizing cells and their derivatives as drug carriers and provides an overview of current drug-loading techniques, particularly those rooted in microfluidic technology. The significant potential for microfluidic technology in targeted disease therapy through drug delivery systems employing cells and their derivatives, is foreseen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202403422 | DOI Listing |
Crit Rev Immunol
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDFChem Biodivers
September 2025
College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.
This research emphasized the extraction and separation of polysaccharides derived from Syzygium jambos (L.) Alston (PSJAP-5), as well as analyses of their structural characteristics and immunomodulatory activities. This study initially employed response surface methodology to determine the extraction conditions of polysaccharides.
View Article and Find Full Text PDFChemMedChem
September 2025
Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam.
Antimicrobial peptides (AMPs) have emerged as promising candidates for combating drug-resistant pathogens and certain cancer types. However, their therapeutic applications are often limited by undesired hemolytic activity, while many AMPs exhibit only moderate potency. Herein, the "helical wheel rotation" strategy as a simple, cost-effective, and modular approach to optimize the pharmacological properties of amphipathic α-helical AMPs without altering their amino acid composition is explored.
View Article and Find Full Text PDFMed Sci (Paris)
September 2025
Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, Canada - CUO-Recherche, Médecine régénératrice, Centre de recherche du CHU de Québec - Université Laval, Québec, Canada.
Glaucoma, age-related macular degeneration, and diabetic retinopathy are complex eye diseases that involve inflammation. Several cellular models are developed to study inflammation mechanisms in the posterior segment of the eye. These models, are composed of cells of various origins (human or animal), derived from different tissues (retina, choroid, skin, and umbilical cord) and belonging to different cell types (epithelial, endothelial, vascular, and neuronal).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Neuroscience, The Scripps Research Institute, San Diego, CA 92037.
Microglia regulate neuronal circuit plasticity. Disrupting their homeostatic function has detrimental effects on neuronal circuit health. Neuroinflammation contributes to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD), with several microglial activation genes linked to increased risk for these conditions.
View Article and Find Full Text PDF