98%
921
2 minutes
20
Hydrofluorocarbons are a class of fluorinated molecules used extensively in residential and industrial refrigeration systems. This study examines the potential of using adsorption processes with the silicalite-1 zeolite to separate a mixture of difluoromethane (CH2F2, HFC-32) and pentafluoroethane (CF3CF2H, HFC-125) at various concentrations. Pure adsorption data were measured using a XEMIS gravimetric microbalance, whereas binary data were determined using the Integral Mass Balance method. Grand canonical Monte Carlo molecular simulations were performed with the Cassandra package. We found that the results from molecular simulations are in satisfactory agreement with experimental loading measurements. Moreover, we show that ideal adsorbed solution theory could not quantitatively match the experimental or computational measurements of binary adsorption or selectivity. Molecular simulations show that refrigerant molecules do not have a uniform distribution in the zeolite framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0221413 | DOI Listing |
Crit Rev Ther Drug Carrier Syst
January 2025
Department of Pharmacology, PSG College of Pharmacy, Coimbatore 641004, Tamil Nadu, India.
Treating neurological disorders is challenging due to the blood-brain barrier (BBB), which limits therapeutic agents, including proteins and peptides, from entering the central nervous system. Despite their potential, the BBB's selective permeability is a significant obstacle. This review explores recent advancements in protein therapeutics for BBB-targeted delivery and highlights computational tools.
View Article and Find Full Text PDFChem Biodivers
September 2025
Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, P. R. China.
A novel and efficient hydrogen peroxide/ascorbic acid-assisted extraction method for the preparation of Grifola frondosa polysaccharide (GFP) was developed, and two GFP fractions (GFP-H and GFP-L) with different molecular weights (Mws) were obtained by separation with ultrafiltration. Both high Mw component (GFP-H, Mw 396.4 kDa) and low Mw component (GFP-L, Mw 12.
View Article and Find Full Text PDFChem Biodivers
September 2025
School of Traditional Chinese Materia Medica, Key Laboratory of Ethnomedicine Material Basis & Pharmacological Mechanisms, Shenyang, Shenyang Pharmaceutical University, Shenyang, China.
In intracellular signaling, mammalian target of rapamycin (mTOR) as an important mammalian target for breast cancer therapy, plays a key role in receiving upstream signals from growth factor receptors such as epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Using 30 compounds from Meehania fargesii var. Radicans, structure-based virtual screening and molecular docking were performed to develop novel and safe breast cancer targeting inhibitors from natural products.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, People's Republic of China.
Usnic acid, a compound from Usneae Filum, has shown notable antitumor effects. Nevertheless, the mechanism of its anti-NSCLC action remains incompletely elucidated. This study used metabolomics, network pharmacology, molecular docking, and dynamics simulation to investigate usnic acid's potential mechanism on NSCLC utilizing A549 cell samples.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
College of Agriculture and Biological Science, Dali University, Dali 671000, China.
The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.
View Article and Find Full Text PDF