Associations between short-term exposure to airborne carbonaceous particles and mortality: A time-series study in London during 2010-2019.

Environ Pollut

Environmental Research Group, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK; NIHR HPRU in Environmental Exposures and Health, Imperial College, London, UK. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exposure to ambient particulate matter (PM) has been identified as a major global health concern; however, the importance of specific chemical PM components remains uncertain. Recent studies have suggested that carbonaceous aerosols are important detrimental components of the particle mixture. Using time-series methods, we investigated associations between short-term exposure to carbonaceous particles and mortality in London, UK. Daily counts of non-accidental, respiratory, and cardiovascular deaths were obtained between 2010 and 2019. For the same period, daily concentrations of carbonaceous particles: organic (OC), elemental (EC), wood-burning (WC), total carbon (TC) and equivalent black carbon (eBC) were sourced from two centrally located monitoring sites (one urban-traffic and one urban-background). Generalized additive models were used to estimate the percentage change in mortality risk associated with interquartile range increases in particulate concentrations. Lagged effects up to 3 days were examined. Stratified analyses were conducted by age, sex, and season, separate analyses were also performed by site-type. For non-accidental mortality, positive associations were observed for all particle species at lag1, including statistically significant percentage risk changes in WC (0.51% (95%CI: 0.19%, 0.82%) per IQR (0.68 μg/m)) and OC (0.45% (95%CI: 0.04%, 0.87% per IQR (2.36 μg/m)). For respiratory deaths, associations were greatest for particulate concentrations averaged over the current and previous 3 days, with increases in risk of 1.70% (95%CI: 0.64%, 2.77%) for WC and 1.31% (95%CI: -0.08%, 2.71%) for OC. No associations were found with cardiovascular mortality. Results were robust to adjustment for particle mass concentrations. Stratified analyses suggested particulate effects were greatest in the summer and respiratory associations more pronounced in females. Our findings are supportive of an association between carbonaceous particles and non-accidental and respiratory mortality. The strongest evidence of an effect was for WC; this is of significance given the rising popularity of wood-burning for residential space heating and energy production across Europe.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.124720DOI Listing

Publication Analysis

Top Keywords

carbonaceous particles
16
associations short-term
8
short-term exposure
8
particles mortality
8
non-accidental respiratory
8
particulate concentrations
8
stratified analyses
8
associations
6
mortality
6
carbonaceous
5

Similar Publications

Multifunctional Dual Carbon Framework for Self-Healing Silicon Anodes.

ACS Appl Mater Interfaces

September 2025

Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.

Developing next-generation anodes with high silicon (Si) contents requires thoughtful embedment of Si particles in protective media, mainly carbonaceous materials. However, it has been challenging to simultaneously realize optimal electrical conduction, structural integrity, and low-cost synthesis for advancing Si-carbon materials. In this work, we addressed these challenges by synthesizing a composite, where commercial Si nanoparticles are embedded in a dual carbon framework via a facile solution mixing and annealing process.

View Article and Find Full Text PDF

Organic and inorganic aerosol particles in the atmosphere are significant drivers of climate change and pose risks to human health. Biomass burning and combustion processes are substantial sources of these particles, mainly inorganic carbonaceous aerosols (IC) such as black carbon (BC), carbon nanotubes (CNT), and graphite. Despite their environmental relevance, the physicochemical properties of IC are not well characterized, limiting the accuracy of their impact assessments on the Earth's radiative balance and human health.

View Article and Find Full Text PDF

Indoor/Outdoor Particulate Matter and Related Pollutants in a Sensitive Public Building in Madrid (Spain).

Int J Environ Res Public Health

July 2025

Department of Environment, Center for Energy, Environmental and Technological Research (CIEMAT), Avenida Complutense 40, 28040 Madrid, Spain.

According to the World Health Organization (WHO), indoor air quality (IAQ) is becoming a serious global concern due to its significant impact on human health. However, not all relevant health parameters are currently regulated. For example, particle number concentration (PNC) and its associated carbonaceous species, such as black carbon (BC), which are classified as carcinogenic by the International Agency for Research on Cancer (IARC), are not currently regulated.

View Article and Find Full Text PDF

: To synthesize and evaluate the function of antibacterial and anticoagulant properties of amphiphilic carbonaceous particle (ACP) derived polyurethane composite membranes TPU/ACPs-CS-PVS-Ag/ACPs-CS-Hep. : ACPs, ACPs-CS, ACPs-CS-PVS-Ag, ACPs-CS-Hep and ACPs-CS-PVS-Ag/ACPs-CS-Hep were prepared and mixed with a TPU matrix, to assess the dispersibility respectively. The blank TPU, TPU/ACPs, TPU/ACPs-CS, TPU/ACPs-CS-PVS-Ag, TPU/ACPs-CS-Hep and TPU/ACPs-CS-PVS-Ag/ACPs-CS-Hep membranes were prepared.

View Article and Find Full Text PDF

Background: Fine particulate matter (<2.5 μm, PM), and its subcomponent ultrafine carbonaceous particles (UFP), have been shown to cause adverse health effects, including respiratory and cardiovascular disease, and decline in kidney function. Previous research demonstrated the presence of these particles in the kidney, yet potential effects on kidney tissue remain elusive.

View Article and Find Full Text PDF