Publications by authors named "Anja Tremper"

The relationship between indoor air quality and public health remains under-researched. WellHome is a transdisciplinary community-based study that will engage with residents to co-design feasible and acceptable research to quantify air pollution exposure in 100 homes in West London and examine its potential to exacerbate asthma symptoms in children. Sampling strategies such as using air quality monitors and passive samplers placed in kitchens, children's bedrooms, and living rooms, will be developed in collaboration with local ambassadors and participating households to measure multiple physical, chemical, microplastic, and biological contaminants.

View Article and Find Full Text PDF

There is a body of evidence that ultrafine particles (UFP, those with diameters ≤ 100 nm) might have significant impacts on health. Accordingly, identifying sources of UFP is essential to develop abatement policies. This study focuses on urban Europe, and aims at identifying sources and quantifying their contributions to particle number size distribution (PNSD) using receptor modelling (Positive Matrix Factorization, PMF), and evaluating long-term trends of these source contributions using the non-parametric Theil-Sen's method.

View Article and Find Full Text PDF
Article Synopsis
  • The oxidative potential (OP) of airborne particulate matter (PM) is important for assessing health risks, but traditional methods of measuring OP have slow time resolution and may miss reactive components.
  • A new instrument has been developed that allows for continuous, high-resolution (5-minute intervals) measurement of OP, providing more accurate data compared to traditional filter-based techniques.
  • Conducted at the Marylebone Road Air Quality Monitoring Station in London, the study showed that high-resolution OP data reveals real-time changes influenced by factors like wind conditions and various PM sources, enhancing our understanding of PM's health implications.
View Article and Find Full Text PDF

Exposure to ambient particulate matter (PM) has been identified as a major global health concern; however, the importance of specific chemical PM components remains uncertain. Recent studies have suggested that carbonaceous aerosols are important detrimental components of the particle mixture. Using time-series methods, we investigated associations between short-term exposure to carbonaceous particles and mortality in London, UK.

View Article and Find Full Text PDF

Background: People living with asthma are disproportionately affected by air pollution, with increased symptoms, medication usage, hospital admissions, and the risk of death. To date, there has been a focus on exhaust emissions, but traffic-related air pollution (TRAP) can also arise from the mechanical abrasion of tyres, brakes, and road surfaces. We therefore created a study with the aim of investigating the acute impacts of non-exhaust emissions (NEEs) on the lung function and airway immune status of asthmatic adults.

View Article and Find Full Text PDF

Concentrations of particulate matter (PM, PM), ultrafine (UFP), particle number (PNC), black carbon (BC), nitrogen dioxide (NO) and nitrogen oxides (NO) were measured in train carriages on diesel and bi-mode trains on inter-city and long-distance journeys in the United Kingdom (UK) using a high-quality mobile measurement system. Air quality on 15 different routes was measured using highly-time resolved data on a total of 119 journeys during three campaigns in winter 2020 and summer 2021; this included 13 different train classes. Each journey was sampled 4-10 times with approximatively 11,000 min of in-train concentrations in total.

View Article and Find Full Text PDF

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on how to accurately measure equivalent black carbon (eBC) concentrations using filter absorption photometers (FAPs) by understanding the mass absorption cross-section (MAC).
  • Researchers analyzed data from 22 different sites to compare various methods for calculating MAC, leading to different classifications of eBC such as LeBC, MeBC, and ReBC, with significant differences observed in measurement outcomes.
  • Results showed that MAC varies by site and season, influencing the observed trends in elemental carbon (EC), revealing a need for careful MAC consideration when interpreting eBC data to reduce uncertainty in measurements.
View Article and Find Full Text PDF

This study aims to picture the phenomenology of urban ambient total lung deposited surface area (LDSA) (including head/throat (HA), tracheobronchial (TB), and alveolar (ALV) regions) based on multiple path particle dosimetry (MPPD) model during 2017-2019 period collected from urban background (UB, n = 15), traffic (TR, n = 6), suburban background (SUB, n = 4), and regional background (RB, n = 1) monitoring sites in Europe (25) and USA (1). Briefly, the spatial-temporal distribution characteristics of the deposition of LDSA, including diel, weekly, and seasonal patterns, were analyzed. Then, the relationship between LDSA and other air quality metrics at each monitoring site was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined variations in equivalent black carbon (eBC) levels across urban Europe to assess its potential as a key air quality indicator, collecting data from various measurement stations from 2006 to 2022.
  • The findings emphasized the necessity for standardization in eBC measurements for better comparisons, revealing a decreasing trend in eBC levels from traffic zones to suburban and regional areas, with Southern cities generally having higher concentrations than those in the North.
  • Additionally, fossil fuel combustion, particularly from traffic, was identified as the primary source of eBC, and while there was an overall decreasing trend in eBC levels over the decade, some cities showed stable or slightly rising concentrations.
View Article and Find Full Text PDF

The relationship between particle exposure and health risks has been well established in recent years. Particulate matter (PM) is made up of different components coming from several sources, which might have different level of toxicity. Hence, identifying these sources is an important task in order to implement effective policies to improve air quality and population health.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzed hourly particle number size distributions (PNSD) from 26 European sites and 1 in the US to understand urban ultrafine particles and their air quality impacts.
  • Findings show that particle number concentrations (PNC) are highest in traffic areas compared to urban background and suburban locations, with noticeable increases as one moves from Northern to Southern Europe.
  • Recommendations highlight the need for specific PNSD monitoring to accurately assess the health effects of nanoparticles, with calls for standardized measurement practices to ensure comparability across different sites.
View Article and Find Full Text PDF
Article Synopsis
  • * The study analyzed data from 22 sites across Europe from 2013-2019, using advanced techniques to identify and quantify various OA components like hydrocarbon-like OA, biomass burning OA, and cooking-like OA.
  • * The findings highlight that oxygenated OA makes up the majority of OA mass, with solid fuel combustion contributing notably, especially in winter, providing valuable data for air quality improvements.
View Article and Find Full Text PDF

There is increasing evidence of potential health impacts from both aircraft noise and aircraft-associated ultrafine particles (UFP). Measurements of noise and UFP are however scarce near airports and so their variability and relationship are not well understood. Particle number size distributions and noise levels were measured at two locations near Gatwick airport (UK) in 2018-19 with the aim to characterize particle number concentrations (PNC) and link PNC sources, especially UFP, with noise.

View Article and Find Full Text PDF

Pontardawe in South Wales, United Kingdom (UK), consistently has the highest concentrations of nickel (Ni) in PM in the UK and repeatedly breaches the 20 ng m annual mean EU target value. Several local industries use Ni in their processes. To assist policy makers and regulators in quantifying the relative Ni contributions of these industries and developing appropriate emission reduction approaches, the hourly concentrations of 23 elements were measured using X-ray fluorescence alongside meteorological variables and black carbon during a four-week campaign in November-December 2015.

View Article and Find Full Text PDF

Although leaded gasoline was banned at the end of the last century, lead (Pb) remains significantly enriched in airborne particles in large cities. The remobilization of historical Pb deposited in soils from atmospheric removal has been suggested as an important source providing evidence for the hypothetical long-term persistency of lead, and possibly other pollutants, in the urban environment. Here, we present data on Pb isotopic composition in airborne particles collected in London (2014 to 2018), which provide strong support that lead deposited via gasoline combustion still contributes significantly to the lead burden in present-day London.

View Article and Find Full Text PDF

Concentrations of the air pollutants (NO and particulate matter) were measured for several months and at multiple locations inside and outside two enclosed railway stations in the United Kingdom - Edinburgh Waverly (EDB) and London King's Cross (KGX) - which, respectively, had at the time 59% and 18% of their train services powered by diesel engines. Average concentrations of NO were above the 40 μg m annual limit value outside the stations and were further elevated inside, especially at EDB. Concentrations of PM inside the stations were 30-40% higher at EDB than outside and up to 20% higher at KGX.

View Article and Find Full Text PDF

Direct measurements of NOx concentration and flux were made from a tall tower in central London, UK as part of the Clean Air for London (ClearfLo) project. Fast time resolution (10 Hz) NO and NO2 concentrations were measured and combined with fast vertical wind measurements to provide top-down flux estimates using the eddy covariance technique. Measured NOx fluxes were usually positive and ranged from close to zero at night to 2000-8000 ng m(-2) s(-1) during the day.

View Article and Find Full Text PDF