A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Selenomethionine supplementation mitigates fluoride-induced liver apoptosis and inflammatory reactions by blocking Parkin-mediated mitophagy in mice. | LitMetric

Selenomethionine supplementation mitigates fluoride-induced liver apoptosis and inflammatory reactions by blocking Parkin-mediated mitophagy in mice.

Sci Total Environ

College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Jinzhong, Shanxi, PR China. Electronic address:

Published: November 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As an environmental pollutant, fluoride-induced liver damage is directly linked to mitochondrial alteration and oxidative stress. Selenium's antioxidant capacity has been shown to alleviate liver damage. Emerging research proves that E3 ubiquitin ligase Park2 (Parkin)-mediated mitophagy may be a therapeutic target for fluorosis. The current study explored the effect of diverse selenium sources on fluoride-caused liver injury and the role of Parkin-mediated mitophagy in this intervention process. Therefore, this study established a fluoride-different selenium sources co-intervention wild-type (WT) mouse model and a fluoride-optimum selenium sources co-intervention Parkin gene knockout (Parkin-/-) mouse model. Our results show that selenomethionine (SeMet) is the optimum selenium supplementation form for mice suffering from fluorosis when compared to sodium selenite and chitosan nano‑selenium because mice from the F-SeMet group showed more closely normal growth and development levels of liver function, antioxidant capacity, and anti-inflammatory ability. Explicitly, SeMet ameliorated liver inflammation and cell apoptosis in fluoride-toxic mice, accomplished through downregulating the mRNA and protein expression levels associated with mitochondrial fusion and fission, mitophagy, apoptosis, inflammatory signalling pathway of nuclear factor-kappa B (NF-κB), reducing the protein expression levels of PARKIN, PTEN-induced putative kinase1 (PINK1), SQSTM1/p62 (P62), microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate specific proteinase 3 (CASPAS3), as well as restraining the content of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor α (TNF-α), and interferon-γ (IFN-γ). The Parkin-/- showed comparable positive effects to the SeMet in the liver of fluorosis mice. The structure of the mitochondria, mRNA, protein expression levels, and the content of proinflammatory factors in mice from the F and F + SeMet groups closely resembled those in the F + SeMet group. Overall, the above results indicated that SeMet could alleviate fluoride-triggered inflammation and apoptosis in mice liver via blocking Parkin-mediated mitophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.175458DOI Listing

Publication Analysis

Top Keywords

parkin-mediated mitophagy
16
selenium sources
12
protein expression
12
expression levels
12
liver
8
fluoride-induced liver
8
apoptosis inflammatory
8
blocking parkin-mediated
8
liver damage
8
antioxidant capacity
8

Similar Publications