98%
921
2 minutes
20
Mechanoluminescent (ML) materials can exhibit visible-to-near-infrared mechanoluminescence when responding to the fracture or deformation of a solid under mechanical stimulation. Transforming mechanical energy into light demonstrates promising applications in terms of visual mechanical sensing. In this work, we synthesized the phosphor CaZnOS:Tb, Sm, which exhibited intense and tunable multicolor mechanoluminescence without pre-irradiation. Intense green ML materials were obtained by doping Tb with different concentrations. Tunable multicolor mechanoluminescence (such as green, yellow-green, and orange-red) could be realized by combining green emission (about 542 nm), attributed to Tb, and red emission (about 600 nm) generated from the Sm in the CaZnOS substrate. The tunable multicolor ML materials CaZnOS:Tb, Sm exhibited intense luminance and recoverable mechanoluminescence when responding to mechanical stimulation. Benefiting from the excellent ML performance and multicolor tunability in CaZnOS:Tb, Sm, we mixed the phosphor with PDMS and a curing agent to explore its practical application. An application for visual mechanical sensing was designed for handwriting identification. By taking a time-lapsed shot while writing, we easily obtained images of the writer's handwriting. The images of the ML intensity were acquired by using specific software to transform the shooting data. We could easily distinguish people's handwriting through analyzing the different ML performances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314236 | PMC |
http://dx.doi.org/10.3390/nano14151279 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing 100029, China.
Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.
View Article and Find Full Text PDFAdv Mater
September 2025
Soft Matter Optics Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland.
Nematic Liquid Crystals (LCs), noted for their simple molecular alignment and broad use in optoelectronics, remain unmodified for over a century. However, in 2017, a unique polar phase, the ferroelectric nematic (N), is confirmed. Subsequently, in 2024, the revolutionary spontaneous mirror symmetry breaking of ferroelectric twist-bend nematic chiral structures (N phase) is demonstrated.
View Article and Find Full Text PDFNanoscale
September 2025
Department of Chemistry, Kyung Hee University, Seoul 02447, Korea.
Highly efficient optoelectronic devices of ultrasmall sizes are demanded as building blocks of next-generation integrated circuits, where tunable color enhances the feasibility of various applications. Here, we realize tunable multicolor nanolasers using disk-shaped axial heterostructures composed of III-nitride materials (GaN/InGaN/GaN), leveraging the optical confinement effect and active waveguiding. In heterostructure nanodisks, the development of exciton-polariton induces unique features near the resonance regime, and the formation of whispering-gallery modes facilitates optical gain processes for the polaritonic lasing of GaN.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
All inorganic lead halide perovskite (CsPbX) has become a hot topic in chiral optics for its high quantum yield and tunable luminescence. The environmental degradation tendency and lack of magneto-optical coupling mechanism of lead-based perovskite severely restrict its chirality integrated application. Rare-earth ions (such as Gd, Eu), with their unique 4f electronic configuration, not only passivate the lattice defects to improve stability but also expand the spectral response range through electronic localization effects.
View Article and Find Full Text PDFChemistry
August 2025
Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany.
We report on the new star-shaped triazatruxene (TAT) tetrad 1, where three peripheral TAT moieties connect to a central TAT through propargylic spacers. The insulating nature of the linkers results in separate, partially overlapping blue and yellow-orange emissions from the peripheral and central TATs. This renders 1 a multicolor emitter, whose emission color can be tuned by the choice of the excitation wavelength and the solvent.
View Article and Find Full Text PDF