Decoding mechanisms of diarrhea induction by enteric viruses.

PLoS Pathog

Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States of America.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11309505PMC
http://dx.doi.org/10.1371/journal.ppat.1012414DOI Listing

Publication Analysis

Top Keywords

decoding mechanisms
4
mechanisms diarrhea
4
diarrhea induction
4
induction enteric
4
enteric viruses
4
decoding
1
diarrhea
1
induction
1
enteric
1
viruses
1

Similar Publications

Drug-induced hepatotoxicity (DIH), characterized by diverse phenotypes and complex mechanisms, remains a critical challenge in drug discovery. To systematically decode this diversity and complexity, we propose a multi-dimensional computational framework integrating molecular structure analysis with disease pathogenesis exploration, focusing on drug-induced intrahepatic cholestasis (DIIC) as a representative DIH subtype. First, a graph-based modularity maximization algorithm identified DIIC risk genes, forming a DIIC module and eight disease pathogenesis clusters.

View Article and Find Full Text PDF

Neural representations of visual statistical learning based on temporal duration.

Imaging Neurosci (Camb)

September 2025

Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, Japan.

Time perception is an essential aspect of daily life, and transitional probabilities can be learned based on temporal durations that are independent of individual objects. Previous studies on temporal and spatial visual statistical learning (VSL) have shown that the hippocampus and lateral occipital cortex are engaged in learning visual regularities. However, it remains unclear whether VSL on temporal duration unlinked to object identity is represented in brain regions involved in VSL and object recognition or in those involved in time perception without sensory cortex involvement.

View Article and Find Full Text PDF

Decoding vascular dysfunction in systemic sclerosis: from endothelial damage to clinical implications.

Curr Opin Rheumatol

September 2025

Division of Rheumatology, Department of Internal Medicine.

Purpose Of Review: This review explores the evolving understanding of vascular dysfunction in systemic sclerosis (SSc), from early endothelial injury to clinical manifestations and emerging therapeutic strategies.

Recent Findings: Endothelial cell (EC) injury, senescence, and endothelial-to-mesenchymal transition are central to SSc vasculopathy. Single-cell and spatial omics have revealed distinct EC subtypes and dysregulated pathways, including interferon signaling and chromatin remodeling.

View Article and Find Full Text PDF

Aims: Decoding the motor intention by electroencephalography to control external devices is an effective method of helping spinal cord injury (SCI) patients to regain motor function. Still, SCI patients have much lower accuracy in the decoding of motor intentions compared to healthy individuals, which severely hampers the clinical application. However, the underlying neural mechanisms are still unknown.

View Article and Find Full Text PDF

Background: Atherosclerosis (AS) is a leading risk factor for cardiovascular diseases globally, characterised by the accumulation of lipids and cholesterol in arterial walls, causing vascular narrowing and sclerosis along with chronic inflammation; this leads to increased risk of heart disease and stroke, significantly impacting patients' health. Danxia Tiaoban Decoction (DXTB), a traditional Chinese medicine (TCM) formula, has demonstrated positive clinical effects in treating AS; however, its mechanisms of action remain unclear.

Objective: To explore the potential mechanisms of action of DXTB in treating AS through multi-omics integration and experimental validation.

View Article and Find Full Text PDF