98%
921
2 minutes
20
Time perception is an essential aspect of daily life, and transitional probabilities can be learned based on temporal durations that are independent of individual objects. Previous studies on temporal and spatial visual statistical learning (VSL) have shown that the hippocampus and lateral occipital cortex are engaged in learning visual regularities. However, it remains unclear whether VSL on temporal duration unlinked to object identity is represented in brain regions involved in VSL and object recognition or in those involved in time perception without sensory cortex involvement. We examined this question by adapting a VSL paradigm to time perception using functional magnetic resonance imaging. Thirty-four students participated in the VSL experiment, comprising a familiarization scan and a subsequent familiarity-decision test. The region-of-interest (ROI)-based classification showed chance-level performance across all ROIs, but only the left medial frontal gyrus, which is involved in subsecond time perception, showed a moderate effect size with 95% confidence intervals not crossing the chance level of 50%. Moreover, searchlight analysis showed that the right orbitofrontal cortex successfully decoded brain responses related to the processing of structured timing sequences. Meanwhile, representational similarity analysis suggested that the neural signal patterns could not be divided between the structured timing and pseudo-random sequences in the lateral occipital cortex. Our findings serve as a pilot study suggesting that the medial frontal and orbitofrontal regions are involved in VSL based on temporal duration, independent of visual object processing, which is a key and common timing mechanism for predicting sequential events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12409740 | PMC |
http://dx.doi.org/10.1162/IMAG.a.135 | DOI Listing |
Cereb Cortex
August 2025
Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany.
The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
ENTPE, Ecole Centrale de Lyon, CNRS, LTDS, UMR5513, 69518 Vaulx-en-Velin, France.
This study investigated the potential role of temporal, spectral, and binaural room-induced cues for the perception of virtual auditory distance. Listeners judged the perceived distance of a frontal source simulated between 0.5 and 10 m in a room via headphones, with eyes closed in a soundproof booth.
View Article and Find Full Text PDFFront Neurol
August 2025
Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
Introduction: A subset of patients with homonymous hemianopia can consciously perceive motion within their blind visual fields-a phenomenon known as the Riddoch phenomenon. However, the factors predicting this residual motion perception remain poorly understood. This study aims to identify clinical and neuroanatomical predictors of the Riddoch phenomenon in stroke patients.
View Article and Find Full Text PDFPNAS Nexus
September 2025
Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany.
Cultural transmission across generations is key to cumulative cultural evolution. While several mechanisms-such as vertical, horizontal, and oblique transmission-have been studied for decades, how these mechanisms change across the life course, beyond childhood, remains unclear. Furthermore, it is under-explored whether different mechanisms apply to distinct learning processes: long-term learning-where individuals invest time and effort to acquire skills-and short-term learning-where individuals share information of immediate use.
View Article and Find Full Text PDFFront Neural Circuits
September 2025
Neuroscience Institute, National Research Council (CNR), Pisa, Italy.
Neural circuits sculpt their structure and modify the strength of their connections to effectively adapt to the external stimuli throughout life. In response to practice and experience, the brain learns to distinguish previously undetectable stimulus features recurring in the external environment. The unconscious acquisition of improved perceptual abilities falls into a form of implicit learning known as perceptual learning.
View Article and Find Full Text PDF