Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermal fluctuations constantly excite all relaxation modes in an equilibrium crystal. As the temperature rises, these fluctuations promote the formation of defects and eventually melting. In active solids, the self-propulsion of "atomic" units provides an additional source of non-equilibrium fluctuations whose effect on the melting scenario is still largely unexplored. Here we show that when a colloidal crystal is activated by a bath of swimming bacteria, solvent temperature and active temperature cooperate to define dynamic and thermodynamic properties. Our system consists of repulsive paramagnetic particles confined in two dimensions and immersed in a bath of light-driven E. coli. The relative balance between fluctuations and interactions can be adjusted in two ways: by changing the strength of the magnetic field and by tuning activity with light. When the persistence time of active fluctuations is short, a single effective temperature controls both the amplitudes of relaxation modes and the melting transition. For more persistent active noise, energy equipartition is broken and multiple temperatures emerge, whereas melting occurs before the Lindemann parameter reaches its equilibrium critical value. We show that this phenomenology is fully confirmed by numerical simulations and framed within a minimal model of a single active particle in a periodic potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297967PMC
http://dx.doi.org/10.1038/s41467-024-50937-2DOI Listing

Publication Analysis

Top Keywords

multiple temperatures
8
relaxation modes
8
active
6
melting
5
fluctuations
5
temperatures melting
4
melting colloidal
4
colloidal active
4
active crystal
4
crystal thermal
4

Similar Publications

The Guide for the Care and Use of Laboratory Animals provides recommendations on sanitation frequencies for rodent caging equipment; however, it allows for performance standards to be used when extending this frequency for individually ventilated cage (IVC) caging. Our institution wanted to reexamine our current standards of care for mouse IVC caging, which includes a 14-d cage bottom and bedding change as well as the use of corncob bedding. This was driven by desire to reduce the stress to mice associated with cage change, and by recent literature showing a potential improved absorbency and multiple health and welfare benefits of paper pulp cellulose bedding products.

View Article and Find Full Text PDF

Evaluating Amino Acid Profiles and Blood Gas Concentrations Between Single and Twin Merino Newborn Lambs.

Anim Sci J

September 2025

Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.

As sheep production standards progress, and animals are bred for high production in terms of the number and weight of lambs weaned per ewe, research has identified a difference in the physiology of single lambs compared to multiple born lambs. The current study aimed to report the baseline amino acid (AA) profiles and blood gas concentrations in newborn, Merino single and twin lambs. From 120 days of gestation, 50 single-bearing and 50 twin-bearing, naturally mated Merino ewes were monitored for signs of approaching parturition.

View Article and Find Full Text PDF

Genome-wide identification and functional characterization of rapid alkalinization factor 6 as a key peptide regulator of abiotic stress tolerance in Tartary buckwheat.

Plant Sci

September 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China. Electronic address:

Rapid alkalinization factors (RALFs) are cysteine-rich signaling peptides in plants that play critical roles in development, immune regulation, and responses to abiotic stress. Despite their importance, the functional characterization of RALF family members in Tartary buckwheat (Fagopyrum tataricum), a nutrient-rich crop known for its remarkable resilience to multiple stresses, remains largely unexplored. In this study, we conducted a comprehensive genome-wide analysis to identify and characterize the FtRALF gene family in Tartary buckwheat, examining their phylogenetic relationships, gene structures, and duplication events.

View Article and Find Full Text PDF

Structural, electronic, and thermodynamic characterization with spectroscopic, topological, reactivity, and molecular docking studies of diallyl sulfide.

J Mol Graph Model

September 2025

Department of Physics, Patan Multiple Campus, Tribhuvan University, Patandhoka, Lalitpur, 44700, Bagmati, Nepal; Department of Physics, St. Xavier's College, Maitighar, Bagmati, 44600, Kathmandu, Nepal. Electronic address:

The bioactive organosulfur compound diallyl sulfide (DAS), found in garlic and onions, was analyzed using density functional theory (DFT). DAS exhibits antimicrobial and anticancer properties, making it a potential candidate for drug discovery. Geometry optimization revealed bond lengths and angles consistent with electron delocalization.

View Article and Find Full Text PDF

Flavonoids are a major class of natural polyphenolic compounds with potent antioxidant, anti-inflammatory and anticancer properties. Among them, quercetin and catechin have been widely studied due to their significant health benefits and potent free radical scavenging activity. The efficient extraction and separation of these structurally similar antioxidants remains challenging, necessitating the development of high-performance adsorbents.

View Article and Find Full Text PDF