Spatial Transcriptomics: Integrating Morphology and Molecular Mechanisms of Kidney Diseases.

Am J Pathol

Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri; Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The recent arrival of high-resolution spatial transcriptomics (ST) technologies is generating a veritable revolution in life sciences, enabling biomolecules to be measured in their native spatial context. By integrating morphology and molecular biology, ST technologies offer the potential of improving the understanding of tissue biology and disease and may also provide meaningful clinical insights. This review describes the main ST technologies currently available and the computational analysis for data interpretation and visualization, and illustrate their scientific and potential medical interest in the context of kidney disease. Finally, we discuss the perspectives and challenges of these booming new technologies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12179522PMC
http://dx.doi.org/10.1016/j.ajpath.2024.06.012DOI Listing

Publication Analysis

Top Keywords

spatial transcriptomics
8
integrating morphology
8
morphology molecular
8
transcriptomics integrating
4
molecular mechanisms
4
mechanisms kidney
4
kidney diseases
4
diseases arrival
4
arrival high-resolution
4
high-resolution spatial
4

Similar Publications

Glioblastoma (GBM) exhibits remarkable intra-tumoral heterogeneity, which contributes to therapeutic resistance and poor clinical outcomes. In this study, we employed integrative single-cell RNA sequencing analysis across two complementary public datasets encompassing diverse cellular populations from GBM centre and periphery regions to elucidate potential spatial molecular programmes driving tumour progression. Our analyses revealed substantial transcriptomic divergence between anatomically distinct tumour regions, with NUCB2 emerging as significantly upregulated in centre-residing neural progenitor cell-like (NPC-like) tumour cells.

View Article and Find Full Text PDF

Background: Interleukin-1 receptor-like 1 (IL1RL1, also known as ST2) plays a critical role in immune regulation. Pan-cancer analysis has revealed that IL1RL1 is closely associated with cellular immune functions; however, its role in clear cell renal cell carcinoma (ccRCC) and the tumor microenvironment (TME) remains poorly defined.

Methods: We analyzed IL1RL1 expression patterns using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Tenascin-C expression in relation to tumor-stroma interaction in ameloblastoma.

Lab Invest

September 2025

Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan.

Ameloblastoma (AM) is a benign epithelial odontogenic tumor that occurs in the jawbone. Although benign, AM can exhibit aggressive features, including locally invasive growth. Additionally, local recurrence or distant metastasis may occur.

View Article and Find Full Text PDF

Comprehensive in silico analyses of keratin heterodimerisation.

Eur J Cell Biol

August 2025

Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany. Electronic address:

Keratins are the largest and most diverse group of intermediate filament proteins, providing structural integrity and mechanical strength to epithelial cells. Although their assembly as heterodimers is well established, the specific pairing preferences and molecular basis of keratin dimerisation remain largely unknown. Here, we employ a high-throughput computational pipeline that integrates AlphaFold Multimer (AFM) modelling, VoroIF-GNN interaction interface quality assessment, interaction energy calculations and structural comparisons with experimentally solved structures to systematically investigate keratin heterodimerisation and to provide a guideline for further analysis of intermediate filament assembly.

View Article and Find Full Text PDF

The Liquid Crystal Monomer 3cH2B Affects the Visual System via Neural-Cell-Specific Retinoic Acid Disruption in the Optic Tectum.

Environ Sci Technol

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.

As a newly recognized type of emerging contaminant, liquid crystal monomers (LCMs) are widely distributed in the environment and human consumptions and their effects on visual systems and the underlying mechanisms are yet to be elucidated. Therefore, this study investigated the visual-neuro influence of 3cH2B (a frequently detected LCM) under environmentally relevant concentrations in zebrafish. The findings revealed that 40 μg/L 3cH2B induced visual behaviors after 40 days of exposure, which was accompanied by decreased retinoic acid (RA) levels and retinal structural deformation in the eyes.

View Article and Find Full Text PDF