Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Energy management strategy is the essential approach for achieving high energy utilization efficiency of triboelectric nanogenerators (TENGs) due to their ultra-high intrinsic impedance. However, the proven management efficiency in practical applications remains low, and the output regulation functionality is still lacking. Herein, we propose a detailed energy transfer and extraction mechanism addressing voltage and charge losses caused by the crucial switches in energy management circuits. The energy conversion efficiency is increased by 8.5 times through synergistical optimization of TENG and switch configurations. Furthermore, a TENG-based power supply with energy storage and regularization functions is realized through system circuit design, demonstrating the stable powering electronic devices under irregular mechanical stimuli. A rotating TENG that only works for 21 s can make a hygrothermograph work stably for 417 s. Even under hand driving, various types of TENGs can consistently provide stable power to electronic devices such as calculators and mini-game consoles. This work provides an in-depth energy transfer and conversion mechanism between TENGs and energy management circuits, and also addresses the technical challenge in converting unstable mechanical energy into stable and usable electricity in the TENG field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297214PMC
http://dx.doi.org/10.1038/s41467-024-50978-7DOI Listing

Publication Analysis

Top Keywords

energy management
12
energy
10
energy conversion
8
conversion mechanism
8
energy storage
8
triboelectric nanogenerators
8
energy transfer
8
management circuits
8
electronic devices
8
efficient energy
4

Similar Publications

The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.

View Article and Find Full Text PDF

Differentiating the 2D Passivation from Amorphous Passivation in Perovskite Solar Cells.

Nanomicro Lett

September 2025

College of New Materials and New Energies, Shenzhen Technology University, Lantian Road 3002, Pingshan, 518118, Shenzhen, People's Republic of China.

The introduction of two-dimensional (2D) perovskite layers on top of three-dimensional (3D) perovskite films enhances the performance and stability of perovskite solar cells (PSCs). However, the electronic effect of the spacer cation and the quality of the 2D capping layer are critical factors in achieving the required results. In this study, we compared two fluorinated salts: 4-(trifluoromethyl) benzamidine hydrochloride (4TF-BA·HCl) and 4-fluorobenzamidine hydrochloride (4F-BA·HCl) to engineer the 3D/2D perovskite films.

View Article and Find Full Text PDF

The development of innovative bioprocessing technologies has resulted from the growing global need for sustainable forms of energy and environmentally friendly waste treatment. In this review, we focus on the combined electro-fermentation and microbial fuel cells, as they form a hybrid system that simultaneously addresses wastewater treatment, bioenergy production, and bioplastics. Even though microbial fuel cells produce electricity out of the organic waste by the use of electroactive microorganisms, electro-fermentation improves the microbial pathways through the external electrochemical management.

View Article and Find Full Text PDF

Hydrothermal-based Wastewater Solids Management for Targeted Resource Recovery and Decarbonization in the Contiguous U.S.

Environ Sci Technol

September 2025

The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.

Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.

View Article and Find Full Text PDF

Fluorescent N-heterocyclic carbene (NHC) metal complexes are useful for various chemical and biological applications. In this study, we developed a simple strategy to synthesize BODIPY-linked NHC metal complexes involving Ag, Cu, Ni, and Pd. The synthesis began with the preparation of BODIPY-imidazolium salt as a precursor ligand.

View Article and Find Full Text PDF