98%
921
2 minutes
20
Silicon monoxide (SiO) has attracted considerable interest as anode material for lithium-ion batteries (LIBs). However, their poor initial Coulombic efficiency (ICE) and conductivity limit large-scale applications. Prelithiation and carbon-coating are common and effective strategies in industry for enhancing the electrochemical performance of SiO. However, the involved heat-treatment processes inevitably lead to coarsening of active silicon phases, posing a significant challenge in industrial applications. Herein, the differences in microstructures and electrochemical performances between prelithiated SiO with a pre-coated carbon layer (SiO@C@PLi) and SiO subjected to carbon-coating after prelithiation (SiO@PLi@C) are investigated. A preliminary carbon layer on the surface of SiO before prelithiation is found that can suppress active Si phase coarsening effectively and regulate the post-prelithiation phase content. The strategic optimization of the sequence where prelithiation and carbon-coating processes of SiO exert a critical influence on its regulation of microstructure and electrochemical performances. As a result, SiO@C@PLi exhibits a higher ICE of 88.0%, better cycling performance and lower electrode expansion than SiO@PLi@C. The pouch-type full-cell tests demonstrate that SiO@C@PLi/Graphite||NCM811 delivers a superior capacity retention of 91% after 500 cycles. This work provides invaluable insights into industrial productions of SiO anodes through optimizing the microstructure of SiO in prelithiation and carbon-coating processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202403847 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
State Key Laboratory of Chemical Resource Engineering, Beijing 100029, China.
Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.
View Article and Find Full Text PDFNanoscale Adv
August 2025
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum DresdenRossendorf 01328 Dresden Germany
Ion irradiation has routinely been used to create defects or even pattern two-dimensional (2D) materials. For efficient defect engineering, that is, choosing the proper ion fluence to achieve the desired concentration of defects, it is of paramount importance to know the probability of creating defects as a function of ion energy. Atomistic simulations of ion impacts on 2D targets can provide such information, especially for free-standing systems, but in the case of supported 2D materials, the substrate can strongly affect defect production.
View Article and Find Full Text PDFACS Omega
September 2025
Experimental Physics, Center for Biophysics, Saarland University, Saarbrücken 66123, Germany.
() is one of the bacterial species capable of forming multilayered biofilms on implants. Such biofilms formed on implanted medical devices often require the removal of the implant in order to avoid sepsis or, in the worst case, even the death of the patient. To address the problem of unwanted biofilm formation, its first step, i.
View Article and Find Full Text PDFACS Omega
September 2025
Faculty of Energy and Fuels, AGH University of Krakow, 30 Mickiewicza, PL-30059 Kraków, Poland.
For the first time, we examined the catalytic performance of a NiB/SiO catalyst with 10 wt % NiB in model hydrodesulfurization of 4,6-dimethyldibenzothiophene (4,6-DMDBT) also together with a competing nitrogen compound, that is, carbazole. The NiB/SiO catalyst (fresh, reduced, and spent) was characterized using the following techniques: N sorption, ICP, XRD, CO chemisorption, XPS, and elemental analysis. The results of XRD, XPS, and elemental analysis indicated the partial decomposition of the NiB phase into metallic nickel (accompanied by boron atoms) and partial sulfidation into NiS species under reaction conditions.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR C
Silicon dioxide nanoparticles (SiO NPs) are a novel material with a wide range of applications whose cumulative effects in the body pose certain health risks. The types of gastric injuries caused by different-sized SiO NPs and their mechanisms, however, remain unclear. Based on this, we established a mouse subchronic exposure model (10 mg/kg/d, 21 consecutive days of tube-feeding) with different SiO NP sizes (50, 300, and 1000 nm) in conjunction with in vitro MC9 and BMMCs models (160 μg/mL exposure for 24 h) to explore the gastric injury mechanisms.
View Article and Find Full Text PDF