Long Non-coding RNA DNM3OS: Pathogenic Roles and Molecular Mechanisms in Pathophysiological Processes.

Curr Med Chem

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.

Published: July 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Long non-coding RNA (lncRNA) is a class of single-stranded RNA biomolecules involving over 200 nucleotides and does not encode proteins. Research on lncRNA has become a hot spot for the past few years. DNM3OS (Dynamin 3 Opposite Strand), which has been clearly identified as a regulatory lncRNA, exerts an integral role in the pathophysiology of multiple human diseases.

Objective: The current review study summarizes the pathogenic mechanism of DNM3OS in various pathophysiological processes, aiming to reveal its important value as a therapeutic drug target for related human diseases and provide a new way for targeted therapy.

Methods: Through systematic retrieval and in-depth study of relevant articles in PubMed, this article analyzes and summarizes the pathogenic roles and molecular mechanisms in pathophysiological processes of long non-coding RNA DNM3OS.

Results: DNM3OS exerts an important regulatory role in the occurrence and development of bone diseases, neoplastic diseases, fibrotic diseases, inflammatory diseases, and many other diseases.

Conclusion: DNM3OS is a potential new biomarker and therapeutic target for the treatment of a series of diseases, consisting of bone diseases, neoplastic diseases, fibrotic diseases, and inflammatory diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0109298673280484240101070607DOI Listing

Publication Analysis

Top Keywords

long non-coding
12
non-coding rna
12
pathophysiological processes
12
diseases
10
pathogenic roles
8
roles molecular
8
molecular mechanisms
8
mechanisms pathophysiological
8
summarizes pathogenic
8
bone diseases
8

Similar Publications

Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.

View Article and Find Full Text PDF

Unraveling the Pivotal Role of LncRNA DUXAP9 in Cancer: Current Progress and Future Perspectives.

Curr Drug Targets

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.

Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors.

View Article and Find Full Text PDF

The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.

View Article and Find Full Text PDF

Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.

View Article and Find Full Text PDF

E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.

View Article and Find Full Text PDF