98%
921
2 minutes
20
The liver of chickens is essential for maintaining physiological activities and homeostasis. This study aims to investigate the specific function and molecular regulatory mechanism of microRNA-122 (miR-122), which is highly expressed in chicken liver. A lentivirus-mediated overexpression vector of miR-122 was constructed and used to infect 12-day-old female Qingyuan Partridge chickens. Transcriptome sequencing analysis was performed to identify differentially expressed genes in the liver. Overexpression of miR-122 resulted in 776 differentially expressed genes (DEGs). Enrichment analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed associations with lipid metabolism, cellular senescence, cell adhesion molecules, and the MAPK signaling pathway. Eight potential target genes of miR-122 (, , , , , , , and ) were identified through miRNA target prediction platforms and literature integration. This study provides novel insights into the molecular regulatory mechanisms of miR-122 in chicken liver, highlighting its role in key biological processes and signaling pathways. These discoveries enhance our understanding of miR-122's impact on chicken liver function and offer valuable information for improving chicken production performance and health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11274173 | PMC |
http://dx.doi.org/10.3390/ani14142132 | DOI Listing |
Vet World
July 2025
Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Dramaga Bogor, West Java, Indonesia.
Background And Aim: The global ban on antibiotic growth promoters (AGPs) in poultry production has intensified the search for effective phytogenic alternatives. Roxb., commonly known as Javanese turmeric, exhibits antimicrobial and antioxidant properties attributed to its bioactive compounds, including xanthorrhizol and curcumin.
View Article and Find Full Text PDFVet Med Sci
September 2025
Department of Pharmacology and Toxicology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh.
The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.
View Article and Find Full Text PDFFront Vet Sci
August 2025
Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
Amphenmulin is a novel pleuromutilin derivative with proven excellent antibacterial activity. To investigate its metabolism in animals, ultra-high-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UHPLC-Q-TOF-MS/MS) was employed to analyze and identify metabolites in rats and chickens and using human, rat, pig, chicken and beagle dog liver microsomes. We identified 18 metabolites from liver microsomes and 24 and 17 metabolites for rats and chickens, respectively.
View Article and Find Full Text PDFPoult Sci
September 2025
College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310023, China.
This study investigated the protective effects of Bacillus subtilis fmbj (BS) in alleviating hepatic immune stress and redox imbalance induced by lipopolysaccharide (LPS) in broilers. A total of 240 chickens were randomly assigned to three groups, each consisting of ten replicates with eight birds per replicate. Birds in the LPS and BSLPS groups received intraperitoneal injections of LPS (1 mg/kg body weight), whereas the CON group was administered an equivalent volume of 0.
View Article and Find Full Text PDFPoult Sci
August 2025
Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada; Centre for Nutrition Modelling, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada; Department of Animal and Veterinary Sciences, Aarhus University, Bliche
Late-stage mortality is a significant challenge for the poultry industry, leading to substantial economic losses, concerns about animal welfare, and operational sustainability. Heart-related conditions, including ascites syndrome, pulmonary hypertension syndrome, hypertrophic cardiomyopathy, and sudden death syndrome, contribute significantly to this issue. The increasing prevalence of these conditions is potentially linked to intense selection pressure aimed at maximizing meat yield, particularly breast meat.
View Article and Find Full Text PDF