98%
921
2 minutes
20
Contemporary studies in polarization multiplexing are hindered by the intrinsic orthogonality constraints of polarization states, which restrict the scope of multiplexing channels and their practical applications. This research transcends these barriers by introducing an innovative nonorthogonal polarization-basis multiplexing approach. Utilizing spatially varied eigen-polarization states within metaatoms, we successfully reconstruct globally nonorthogonal channels that exhibit minimal crosstalk. This method not only facilitates the generation of free-vector holograms, achieving complete degrees-of-freedom in three nonorthogonal channels with ultra-low energy leakage, but it also significantly enhances the dimensions of the Jones matrix, expanding it to a groundbreaking 10 × 10 scale. The fusion of a controllable eigen-polarization engineering mechanism with a vectorial diffraction neural network culminates in the experimental creation of 55 intricate holographic patterns across these expanded channels. This advancement represents a profound shift in the field of polarization multiplexing, unlocking opportunities in advanced holography and quantum encryption, among other applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282074 | PMC |
http://dx.doi.org/10.1038/s41467-024-50586-5 | DOI Listing |
J Virol
September 2025
Department of Internal Medicine, Saint Louis University, St. Louis, Missouri, USA.
T cells play an important role in initiating antibody responses by instructive signals of cell-cell contacts and secretion of soluble cytokines as mediators. We investigated the role of the modified soluble E2 (sE2) antigen from hepatitis C virus (HCV) on healthy human peripheral blood mononuclear cell (PBMC)-derived immune cells or immunized mouse cells to understand the mechanisms of immune regulation by the candidate vaccine antigen. HCV E2 and E2 displayed a role in inducing type 17 T-helper cell (Th17) phenotype, as indicated by interleukin-17 (IL-17) expression and signal transducer and activator of transcription 3 (Stat3) phosphorylation.
View Article and Find Full Text PDFNanophotonics
August 2025
School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.
The terahertz (THz) frequency band has abundant spectrum resources, which is suitable for constructing communication systems with ultra-high data rates and extremely low latency. Multiple input multiple output (MIMO) devices are crucial for realizing THz communication, and the synchronous transmission and noncorrelation of different channels are the keys to MIMO technology. This paper proposes a graphene-based polarization spatial diversity and multiplexing MIMO surface (PDM-MIMOS) with 2 × 2 metasurface arrays.
View Article and Find Full Text PDFNanophotonics
August 2025
Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin, 300072, China.
Vortex beams, characterized by orbital angular momentum (OAM), hold significant potential in optical communications, quantum information processing, and optical manipulation. However, existing metasurface designs are largely confined to single-degree-of-freedom control, such as static OAM generation or fixed focal points, which limiting their ability to integrate polarization multiplexing with dynamic focal tuning. To address this challenge, we propose a tunable multifunctional cascaded metasurface that synergizes polarization-sensitive phase engineering with interlayer rotational coupling, overcoming conventional device limitations.
View Article and Find Full Text PDFHigh-performance polarization-multiplexed metalenses (PMMs) hold remarkable transformative potential in optical platforms. However, balancing the numerical aperture (NA), focusing efficiency, and spectral bandwidth remains a significant challenge in the existing PMMs, thus restricting their extensive applications. To circumvent these challenges, we theoretically demonstrate two unique orthogonal (linear and circular) PMMs based on all 4H-silicon carbide (4H-SiC) with superior NA, sound focusing efficiency, and broad wavelength range.
View Article and Find Full Text PDFAll-optical diffractive neural networks have attracted extensive attention due to their characteristics of high parallelism, high processing speed, and low energy consumption. However, most existing DNN frameworks are designed for single-task operations and lack the flexibility to handle multiple tasks within an artificial intelligence (AI) system. Here, we propose polarization-multiplexed diffractive neural network (PMDNN) based on liquid crystals for multi-task classification.
View Article and Find Full Text PDF