Regulating band structure, charge transfer and separation, oxygen adsorption and activation by surface ion modification.

Environ Sci Pollut Res Int

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Jiangsu Engineering an

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As a most promising environmental technology, the substantial enhancement of photocatalytic efficiency is still a big challenge for practical applications. In this work, the surface of BiOCO (BOC) nanotubes are modified by Cl and I. The as-obtained samples at different hydrothermal temperatures (T) are designated as T-X-BOC (X = Cl, I). X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy and X-ray photoelectron spectroscopy (XPS) prove that Cl and I merely chemically adsorb on the BOC surface, rather than dope into the crystal lattice. The surface modification of Cl and I slightly increases light absorption range, while significantly promotes the photoelectron migration from bulk to the surface that greatly enhances the carrier separation efficiency. Density functional theory (DFT) calculations further prove that surface Cl and I have adjusted band structure and surface charge distribution. Besides, the surface Cl and I favor the O adsorption and trap the surface photoelectrons, thus promoting the formation of •O; while the surface Cl and I impede the surface adsorption of HO, thus refraining the generation of •OH. In the degradation of rhodamine B (RhB), holes and •O radicals play the crucial role. Under ultraviolet light irradiation (λ < 420 nm) for 45 min, the RhB degradation ratios over 150-Cl-BOC (94%) and 150-I-BOC (85%) are 4.2 and 3.7 times higher than that of original BOC (18%), respectively. This work demonstrates that the simple surface halogenation modification greatly improves the photocatalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34441-0DOI Listing

Publication Analysis

Top Keywords

surface
11
band structure
8
regulating band
4
structure charge
4
charge transfer
4
transfer separation
4
separation oxygen
4
oxygen adsorption
4
adsorption activation
4
activation surface
4

Similar Publications

Solid-state polycyclotrimerization of diynes to porous organic polymers.

Chem Commun (Camb)

September 2025

Inorganic Chemistry I Institute, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany.

Herein, we report a solid-state polycyclotrimerization of 1,4-diethynylbenzene using mechanochemical activation in a ball mill, yielding a highly porous and hydrophobic hyperbranched polymer (HBP) with a specific surface area of up to 570 m g. The reaction, catalyzed by Fe(hmds) and conducted under solvent-free conditions, was optimized by varying milling time and frequency. This method enables the efficient synthesis of insoluble, porous organic polymers with high yields (up to 95%) and offers an environmentally friendly alternative to traditional solution-based polymerizations.

View Article and Find Full Text PDF

An Investigation of Hyperostosis Frontalis Interna in a Modern Anatomical Body Donor Population.

Clin Anat

September 2025

Department of Communication Disorders and Sciences, Rush University Medical Center, Chicago, Illinois, USA.

This research sought to examine the prevalence and severity of hyperostosis frontalis interna (HFI) in the Chicagoland anatomical body donor population. The study further aimed to elucidate potential demographic risk factors for HFI, including sex, age at death, and structural vulnerability index (SVI), as well as any common comorbidities, as gleaned from death certificates. HFI is an irregular bony overgrowth of the endocranial surface of the frontal bone.

View Article and Find Full Text PDF

Although improving the charging cutoff voltage is an effective strategy to increase its capacity, LiCoO ("LCO") undergoes rapid capacity decay due to severe structural and interface degradations at high voltages. Herein, we proposed a multifunctional surface modification by coating nano-sized entropy materials (Li-La-Ti-Zr-Co-O, Nano-MEO). Nano-MEO rivets were constructed on the surface of LCO, which stabilized the fragile surface.

View Article and Find Full Text PDF

Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.

View Article and Find Full Text PDF

In the past decades, several authors have investigated the possibility that genome size is correlated with metabolic rates, obtaining conflicting results. The main biological explanation among the supporters of this correlation was related to the nucleotypic effect of the genome size, which, determining the cellular volume and hence the surface area-to-volume ratio, influences cellular metabolism. In the present study, I tested a different hypothesis: genome size, influencing red blood cell (RBC) volume, is correlated with capillary density and diameter.

View Article and Find Full Text PDF