Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the origin of surface reconstruction is crucial for developing highly efficient lattice oxygen oxidation mechanism (LOM) based spinel oxides. Traditionally, the reconstruction has been achieved through electrochemical procedures, such as cyclic voltammetry (CV), linear sweep voltammetry (LSV). In this work, we found that the surface reconstruction in LOM-based CoFeAlO catalyst was an irreversible oxygen redox chemical reaction. And a lower oxygen vacancy formation energy (E) could benefit the combination of the activated lattice oxygen atoms with adsorbed water molecular. Motivated by this finding, a strategy of phase boundary construction from Co tetrahedral to octahedral was employed to decrease E in CoFeAlO. The results showed that as the Co octahedral occupancy ratio rose to 64 %, a 3.5 nm-thick reconstructed layer formed on the catalyst surface with a 158 mV decrease in overpotential. Further experiments indicated that the coexistence of tetrahedral-octahedral (O-T) phase would result in lattice mismatch, promoting non-bonding oxygen states and lowering E. Then more active lattice oxygen combined with HO molecules to generate hydroxide ions (OH), followed by soluble cation leaching, which enhanced the reconstruction process. This work provided new insights into the relationship between the intrinsic structure of pre-catalysts and surface reconstruction in LOM-based spinel electrocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202409912DOI Listing

Publication Analysis

Top Keywords

surface reconstruction
16
lattice oxygen
12
spinel oxides
8
phase boundary
8
boundary construction
8
reconstruction lom-based
8
oxygen
7
reconstruction
6
promoting surface
4
reconstruction spinel
4

Similar Publications

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Utilizing biomaterials for laryngeal respiratory mucosal tissue repair in an animal model.

Biomater Biosyst

September 2025

ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

Introduction: The airway mucosa plays a crucial role in protection and various physiological functions. Current methods for restoring airway mucosa, such as myocutaneous flaps or split skin grafts, create a stratified squamous layer that lacks the cilia and mucus-secreting glands of the native columnar-lined airway. This study examines the application of various injectable biopolymers as active molecules for a potential approach to regenerating laryngeal epithelial tissue.

View Article and Find Full Text PDF

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Suppression of passivation on NiMoO4 microrod by ultrathin metal-organic-framework nanosheets in urea-assisted natural seawater splitting.

J Colloid Interface Sci

September 2025

Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam. Electronic address:

Organic nucleophile-assisted natural seawater electrolysis has emerged as a promising strategy for green hydrogen production by significantly reducing energy consumption. Among Ni-based electrocatalysts, NiMoO has drawn attention for its activity in both oxygen evolution reaction (OER) and urea oxidation reaction (UOR). However, its practical application is hindered by severe surface passivation, particularly at industrial current densities (e.

View Article and Find Full Text PDF

Ni-Fe (oxy)hydroxides are among the most active oxygen evolution reaction (OER) catalysts in alkaline media. However, achieving precise control over local asymmetric Fe-O-Ni active sites in Ni-Fe oxyhydroxides for key oxygenated intermediates' adsorption steric configuration regulation of the OER is still challenging. Herein, we report a two-step dealloying strategy to fabricate asymmetric Fe-O-Ni pair sites in the shell of NiOOH@FeOOH/NiOOH heterostructures from NiFe Prussian blue analogue (PBA) nanocubes, involving anion exchange and structure reconstruction.

View Article and Find Full Text PDF