Chirality-driven strong thioredoxin reductase inhibition.

Biomaterials

Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, 510632, China. Electronic address:

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Overexpression of thioredoxin reductase (TXNRD) plays crucial role in tumorigenesis. Therefore, designing TXNRD inhibitors is a promising strategy for targeted anticancer drug development. However, poor selectivity has always been a challenge, resulting in unavoidable toxicity in clinic. Herein we demonstrate a strategy to develop highly selective chiral metal complexes-based TXNRD inhibitors. By manipulating the conformation of two distinct weakly interacting groups, we optimize the compatibility between the drug and the electrophilic group within the active site of TXNRD to enhance their non-covalent interaction, thus effectively avoids the poor selectivity deriving from covalent drug interaction, on the basis of ensuring the strong inhibition. Detailed experimental and computational results demonstrate that the chiral isomeric drugs bind to the active site of TXNRD, and the interaction strength is well modulated by chirality. Especially, the meso-configuration, in which the two large sterically hindered active groups are positioned on opposite sides of the drug, exhibits the highest number of non-covalent interactions and most effective inhibition on TXNRD. Taken together, this work not only provides a novel approach for developing highly selective proteinase inhibitors, but also sheds light on possible underlying mechanisms for future application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2024.122705DOI Listing

Publication Analysis

Top Keywords

thioredoxin reductase
8
txnrd inhibitors
8
poor selectivity
8
highly selective
8
active site
8
site txnrd
8
txnrd
6
chirality-driven strong
4
strong thioredoxin
4
reductase inhibition
4

Similar Publications

Novel Thioredoxin reductase 1 inhibitor BS1801 relieves treatment resistance and triggers endoplasmic reticulum stress by elevating reactive oxygen species in glioma.

Redox Biol

August 2025

Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Beijing, China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China; Beijing Engineering Research Center of Target

Glioma patients will inevitably develop resistance to temozolomide (TMZ) leading to tumor recurrence. By comparing genomic differences between primary and recurrent glioma patients, Thioredoxin reductase 1 (TrxR1) was identified as a crucial role in TMZ resistance. Glioma cells elevate the expression level of TXNRD1 to against TMZ-induced reactive oxygen species (ROS), thereby conferring TMZ resistance.

View Article and Find Full Text PDF

Oxidative stress leads to neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. Therefore, we isolated Lactiplantibacillus plantarum and Pediococcus pentosaceus strains from kimchi and investigated the neuroprotective effects of their heat-killed lactic acid bacteria (LAB) strains against oxidative stress. All LAB strains demonstrated suitable probiotic characteristics.

View Article and Find Full Text PDF

Rainbow trout(Oncorhynchus mykiss) is a typical cold-water fish often threatened by high summer temperatures. Nano-selenium as a feed additive can improve the antioxidant capacity of the body and relieve stress. In this study, different levels of nano-selenium (0, 5 and 10 mg/kg) were added to the feed of rainbow trout to determine the changes in spleen structure and expression of related genes in rainbow trout at the proper temperature (18℃) and heat stress temperature (24℃).

View Article and Find Full Text PDF

Unlabelled: is an important human pathogen responsible for causing tularemia in the Northern Hemisphere. has been developed as a biological weapon in the past due to its extremely high virulence. is a gram-negative, intracellular pathogen that primarily infects macrophages.

View Article and Find Full Text PDF

Au(III) Schiff base complexes as oxidoreductase inhibitors against carbapenem- and colistin-resistant Gram-negative bacteria via targeting redox active motifs.

Redox Biol

August 2025

Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. Electronic address:

Carbapenem- and colistin-resistant Gram-negative bacteria have become one of the most severe public health issues worldwide. The development of advanced antibacterial agents that can outpace microbial adaptation is imperative. The thioredoxin (Trx) and glutaredoxin (Grx) systems play important roles in maintaining redox homeostasis within Gram-negative bacterial cell membranes, with thioredoxin reductase (TrxR) and glutathione reductase (GR) being classical antibacterial targets.

View Article and Find Full Text PDF