98%
921
2 minutes
20
Overexpression of thioredoxin reductase (TXNRD) plays crucial role in tumorigenesis. Therefore, designing TXNRD inhibitors is a promising strategy for targeted anticancer drug development. However, poor selectivity has always been a challenge, resulting in unavoidable toxicity in clinic. Herein we demonstrate a strategy to develop highly selective chiral metal complexes-based TXNRD inhibitors. By manipulating the conformation of two distinct weakly interacting groups, we optimize the compatibility between the drug and the electrophilic group within the active site of TXNRD to enhance their non-covalent interaction, thus effectively avoids the poor selectivity deriving from covalent drug interaction, on the basis of ensuring the strong inhibition. Detailed experimental and computational results demonstrate that the chiral isomeric drugs bind to the active site of TXNRD, and the interaction strength is well modulated by chirality. Especially, the meso-configuration, in which the two large sterically hindered active groups are positioned on opposite sides of the drug, exhibits the highest number of non-covalent interactions and most effective inhibition on TXNRD. Taken together, this work not only provides a novel approach for developing highly selective proteinase inhibitors, but also sheds light on possible underlying mechanisms for future application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2024.122705 | DOI Listing |
Redox Biol
August 2025
Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, No.119 South 4th Ring Road West, Beijing, China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China; Beijing Engineering Research Center of Target
Glioma patients will inevitably develop resistance to temozolomide (TMZ) leading to tumor recurrence. By comparing genomic differences between primary and recurrent glioma patients, Thioredoxin reductase 1 (TrxR1) was identified as a crucial role in TMZ resistance. Glioma cells elevate the expression level of TXNRD1 to against TMZ-induced reactive oxygen species (ROS), thereby conferring TMZ resistance.
View Article and Find Full Text PDFBrain Res
September 2025
Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:
Oxidative stress leads to neurodegenerative diseases such as Parkinson's, Alzheimer's, and Huntington's diseases. Therefore, we isolated Lactiplantibacillus plantarum and Pediococcus pentosaceus strains from kimchi and investigated the neuroprotective effects of their heat-killed lactic acid bacteria (LAB) strains against oxidative stress. All LAB strains demonstrated suitable probiotic characteristics.
View Article and Find Full Text PDFFish Physiol Biochem
September 2025
College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
Rainbow trout(Oncorhynchus mykiss) is a typical cold-water fish often threatened by high summer temperatures. Nano-selenium as a feed additive can improve the antioxidant capacity of the body and relieve stress. In this study, different levels of nano-selenium (0, 5 and 10 mg/kg) were added to the feed of rainbow trout to determine the changes in spleen structure and expression of related genes in rainbow trout at the proper temperature (18℃) and heat stress temperature (24℃).
View Article and Find Full Text PDFJ Bacteriol
September 2025
Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA.
Unlabelled: is an important human pathogen responsible for causing tularemia in the Northern Hemisphere. has been developed as a biological weapon in the past due to its extremely high virulence. is a gram-negative, intracellular pathogen that primarily infects macrophages.
View Article and Find Full Text PDFRedox Biol
August 2025
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China. Electronic address:
Carbapenem- and colistin-resistant Gram-negative bacteria have become one of the most severe public health issues worldwide. The development of advanced antibacterial agents that can outpace microbial adaptation is imperative. The thioredoxin (Trx) and glutaredoxin (Grx) systems play important roles in maintaining redox homeostasis within Gram-negative bacterial cell membranes, with thioredoxin reductase (TrxR) and glutathione reductase (GR) being classical antibacterial targets.
View Article and Find Full Text PDF