Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In vivo astrocyte-to-neuron (AtN) conversion induced by overexpression of neural transcriptional factors has great potential for neural regeneration and repair. Here, we demonstrate that a single neural transcriptional factor, Dlx2, converts mouse striatal astrocytes into neurons in a dose-dependent manner. Lineage-tracing studies in Aldh1l1-CreERT2 mice confirm that Dlx2 can convert striatal astrocytes into DARPP32 and Ctip2 medium spiny neurons (MSNs). Time-course studies reveal a gradual conversion from astrocytes to neurons in 1 month, with a distinct intermediate state in between astrocytes and neurons. Interestingly, when Dlx2-infected astrocytes start to lose astrocytic markers, the other local astrocytes proliferate to maintain astrocytic levels in the converted areas. Unexpectedly, although Dlx2 efficiently reprograms astrocytes into neurons in the gray matter striatum, it also induces partial reprogramming of astrocytes in the white matter corpus callosum. Such partial reprogramming of white matter astrocytes is associated with neuroinflammation, which can be suppressed by the addition of NeuroD1. Our results highlight the importance of investigating AtN conversion in both the gray matter and white matter to thoroughly evaluate therapeutic potentials. This study also unveils the critical role of anti-inflammation by NeuroD1 during AtN conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/dneu.22951DOI Listing

Publication Analysis

Top Keywords

astrocytes neurons
16
atn conversion
12
white matter
12
astrocytes
9
neural transcriptional
8
striatal astrocytes
8
gray matter
8
partial reprogramming
8
conversion
5
neurons
5

Similar Publications

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Neural stem cells (NSCs) are multipotent stem cells with self-renewal capacity, able to differentiate into all neural lineages of the central nervous system, including neurons, oligodendrocytes, and astrocytes; thus, their proliferation and differentiation are essential for embryonic neurodevelopment and adult brain homoeostasis. Dysregulation in these processes is implicated in neurological disorders, highlighting the need to elucidate how NSCs proliferate and differentiate to clarify the mechanisms of neurogenesis and uncover potential therapeutic targets. MicroRNAs (miRNAs) are small, post-transcriptional regulators of gene expression involved in many aspects of nervous system development and function.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.

View Article and Find Full Text PDF

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF

Metabolic synergy between astrocytes and neurons is key to maintaining normal brain function. As the main supporting cells in the brain, astrocytes work closely with neurons through intercellular metabolic synergy networks to jointly regulate energy metabolism, lipid metabolism, synaptic transmission, and cerebral blood flow. This important synergy is often disrupted in neurological diseases such as Alzheimer's disease, Parkinson's disease, and stroke.

View Article and Find Full Text PDF