A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CircARCN1 aggravates atherosclerosis by regulating HuR-mediated USP31 mRNA in macrophages. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Circular RNAs (circRNAs) are considered important regulators of biological processes, but their impact on atherosclerosis development, a key factor in coronary artery disease (CAD), has not been fully elucidated. We aimed to investigate their potential use in patients with CAD and the pathogenesis of atherosclerosis.

Methods And Results: Patients with stable angina (SA) or acute coronary syndrome (ACS) and controls were selected for transcriptomic screening and quantification of circRNAs in blood cells. We stained carotid plaque samples for circRNAs and performed gain- and loss-of-function studies in vitro. Western blots, protein interaction analysis, and molecular approaches were used to perform the mechanistic study. ApoE-/- mouse models were employed in functional studies with adeno-associated virus-mediated genetic intervention. We demonstrated elevated circARCN1 expression in peripheral blood mononuclear cells from patients with SA or ACS, especially in those with ACS. Furthermore, higher circARCN1 levels were associated with a higher risk of developing SA and ACS. We also observed elevated expression of circARCN1 in carotid artery plaques. Further analysis indicated that circARCN1 was mainly expressed in monocytes and macrophages, which was also confirmed in atherosclerotic plaques. Our in vitro studies provided evidence that circARCN1 affected the interaction between HuR and ubiquitin-specific peptidase 31 (USP31) mRNA, resulting in attenuated USP31-mediated NF-κB activation. Interestingly, macrophage accumulation and inflammation in atherosclerotic plaques were markedly decreased when circARCN1 was knocked down with adeno-associated virus in macrophages of ApoE-/- mice, while circARCN1 overexpression in the model exacerbated atherosclerotic lesions.

Conclusions: Our findings provide solid evidence macrophagic-expressed circARCN1 plays a role in atherosclerosis development by regulating HuR-mediated USP31 mRNA stability and NF-κB activation, suggesting that circARCN1 may serve as a factor for atherosclerotic lesion formation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvae148DOI Listing

Publication Analysis

Top Keywords

usp31 mrna
12
circarcn1
10
regulating hur-mediated
8
hur-mediated usp31
8
atherosclerosis development
8
atherosclerotic plaques
8
nf-κb activation
8
circarcn1 aggravates
4
aggravates atherosclerosis
4
atherosclerosis regulating
4

Similar Publications