Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dietary patterns that include an excess of foods rich in saturated fat are associated with brain dysfunction. Although microgliosis has been proposed to play a key role in the development of brain dysfunction in diet-induced obesity (DIO), neuroinflammation with cytokine over-expression is not always observed. Thus, mechanisms by which microglia contribute to brain impairment in DIO are uncertain. Using the BV2 cell model, we investigated the gliosis profile of microglia exposed to palmitate (200 µmol/L), a saturated fatty acid abundant in high-fat diet and in the brain of obese individuals. We observed that microglia respond to a 24-hour palmitate exposure with increased proliferation, and with a metabolic network rearrangement that favors energy production from glycolysis rather than oxidative metabolism, despite stimulated mitochondria biogenesis. In addition, while palmitate did not induce increased cytokine expression, it modified the protein cargo of released extracellular vesicles (EVs). When administered intra-cerebroventricularly to mice, EVs secreted from palmitate-exposed microglia in vitro led to memory impairment, depression-like behavior, and glucose intolerance, when compared to mice receiving EVs from vehicle-treated microglia. We conclude that microglia exposed to palmitate can mediate brain dysfunction through the cargo of shed EVs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253458PMC
http://dx.doi.org/10.1186/s12974-024-03168-7DOI Listing

Publication Analysis

Top Keywords

brain dysfunction
12
extracellular vesicles
8
palmitate exposure
8
microglia exposed
8
exposed palmitate
8
microglia
7
brain
6
palmitate
5
vesicles released
4
released microglia
4

Similar Publications

Deletion of the SHORT Syndrome Gene Prkce Results in Brain Atrophy and Cognitive and Motor Behavior Deficits in Mice.

Neurosci Bull

September 2025

Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.

The neurological manifestations of SHORT syndrome include intrauterine growth restriction, microcephaly, intellectual disability, hearing loss, and speech delay. SHORT syndrome is generally believed to be caused by PIK3R1 gene mutations and impaired PI3K-AKT activation. Recently, a clinical case report described a SHORT syndrome with a novel mutant in PRKCE gene encoding protein kinase Cε (PKCε).

View Article and Find Full Text PDF

Current Therapeutic Strategies in Parkinson's Disease: Future Perspectives.

Mol Cells

September 2025

Department of Neuroscience, Kyung Hee University, Seoul, South Korea; Department of Physiology, Kyung Hee University School of Medicine, Seoul, South Korea. Electronic address:

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of misfolded α-synuclein. Current treatments, including dopaminergic medications and deep brain stimulation (DBS), provide symptomatic relief but do not halt disease progression. Recent advances in molecular research have enabled the development of disease-modifying strategies targeting key pathogenic mechanisms, such as α-synuclein aggregation, mitochondrial dysfunction, and genetic mutations including LRRK2 and GBA1.

View Article and Find Full Text PDF

Mechanisms of motor dysfunction in functional neurological disorder: A narrative review.

Neurosci Biobehav Rev

September 2025

Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia; Department of Psychiatry, The University of Melbourne, Austin Health, Melbourne, Victoria, Australia. Electronic address:

One of the characteristic presentations of functional neurological disorder (FND) is with motor symptoms, such as weakness and tremor. While these symptoms are both common and disabling, how they arise at a mechanistic level remains unclear. This review provides an up-to-date account of the underpinnings of motor dysfunction in FND by integrating findings from neuroimaging, physiology, genetic, brain stimulation, and behavioral studies.

View Article and Find Full Text PDF

Glutamate-mediated excitotoxicity represents a common pathomechanism in neurological disorders. As the predominant glutamate transporter in the central nervous system, glutamate transporter 1 (GLT-1, known as EAAT2 in humans) plays a crucial role in maintaining glutamate homeostasis and preventing excitotoxicity through its Na⁺-dependent transport mechanism. Key functions of GLT-1 include reducing extracellular glutamate concentration, regulating calcium homeostasis, suppressing oxidative stress, preserving mitochondrial integrity, and modulating neuroinflammatory processes by limiting microglial activation.

View Article and Find Full Text PDF

HCN2 promotes neurodevelopmental and synaptic function repair through the CaMKII/CREB pathway to alleviate general anesthesia-induced cognitive impairment.

Cell Signal

September 2025

Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China. Electronic address:

Repeated exposure to gestational general anesthesia during pregnancy has been associated with neurodevelopmental damage and cognitive and social dysfunction in offspring. This study investigates the underlying mechanisms and therapeutic strategies for mitigating these effects. Behavioral tests revealed significant impairments in cognitive, social, and spatial learning abilities in the offspring of general anesthesia-treated mice, alongside delayed eye-opening, reduced body weight, and neuronal damage.

View Article and Find Full Text PDF