High-throughput drug screening using a library of antibiotics targeting cancer cell lines that are resistant and sensitive to gemcitabine.

Biochem Biophys Res Commun

Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Department of Convergence Medicine, Asan Medical Center, Seoul 05505, Republic of Korea; Division of Hepato-Biliary and Pancreatic Surgery, Department of Su

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gemcitabine is a nucleoside analog widely used as an anticancer agent against several types of cancer. Although gemcitabine sometimes shows excellent effectiveness, cancer cells are often poorly responsive to or resistant to the drug. Recently, specific strains or dysbiosis of the human microbiome were correlated with drug reactivity and resistance acquisition. Therefore, we aimed to identify antibiotic compounds that can modulate the microbiome to enhance the responsiveness to gemcitabine. To achieve this, we confirmed the gemcitabine responsiveness based on public data and conducted drug screening on a set of 250 antibiotics compounds. Subsequently, we performed experiments to investigate whether the selected compounds could enhance the responsiveness to gemcitabine. First, we grouped a total of seven tumor cell lines into resistant and sensitive group based on the IC50 value (1 μM) of gemcitabine obtained from the public data. Second, we performed high-throughput screening with compound treatments, identifying seven compounds from the resistant group and five from the sensitive group based on dose dependency. Finally, the combination of the selected compound, puromycin dihydrochloride, with gemcitabine in gemcitabine-resistant cell lines resulted in extensive cell death and a significant increase in cytotoxic efficacy. Additionally, mRNA levels associated with cell viability and stemness were reduced. Through this study, we screened antibiotics to further improve the efficacy of existing anticancer drugs and overcome resistance. By combining existing anticancer agents and antibiotic substances, we hope to establish various drug combination therapies and ultimately improve cancer treatment efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2024.150369DOI Listing

Publication Analysis

Top Keywords

cell lines
12
drug screening
8
lines resistant
8
resistant sensitive
8
gemcitabine
8
enhance responsiveness
8
responsiveness gemcitabine
8
public data
8
sensitive group
8
group based
8

Similar Publications

Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.

View Article and Find Full Text PDF

Anti-CD20 monoclonal antibodies are gaining clinical relevance in the nephrology community due to their demonstrated efficacy and favorable safety profiles across short-, medium-, and long-term use. Initially developed for hematologic malignancies and multiple sclerosis, B-cell depletion therapies are now being investigated across a broader spectrum of autoimmune diseases, including glomerulopathies, both with and without associated podocytopathy. Recent advances have led to the development of novel anti-CD20 agents that are being used not only as potential alternatives to corticosteroids but also as adjunctive therapies in complex clinical settings.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF

This case report describes the use of doxazosin (Cardura) as a treatment for a patient with an autosomal dominant , single-nucleotide R398Q pathogenic variant, which has not previously been described in the literature. The patient has gain-of-function pathogenic genetic variant. Because of the patient's continued seizure burden with the use of traditional antiseizure medications and failed invasive antiseizure interventions, an oocyte cell line with the specific genetic variant was created to test efficacy of various medications.

View Article and Find Full Text PDF