Analysis of the Spatholobus suberectus full-length transcriptome identified an R2R3-MYB transcription factor-encoding gene SsMYB158 that regulates flavonoid biosynthesis.

Plant Physiol Biochem

Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; National Engineering Research Center for Southwest Endangered Medicinal M

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spatholobus suberectus Dunn (Leguminosae) has been used for medicinal purposes for a long period. Flavonoids are the major bioactive components of S. suberectus. However, there is still limited knowledge of the exact method via which transcription factors (TFs) regulate flavonoid biosynthesis. The full-length transcriptome of S. suberectus was analyzed using SMRT sequencing; 61,548 transcripts were identified, including 12,311 new gene loci, 53,336 novel transcripts, 44,636 simple sequence repeats, 36,414 complete coding sequences, 871 long non-coding RNAs and 6781 TFs. The SsMYB158 TF, which is associated with flavonoid biosynthesis, belongs to the R2R3-MYB class and is localized subcellularly to the nucleus. The overexpression of SsMYB158 in Nicotiana benthamiana and the transient overexpression of SsMYB158 in S. suberectus resulted in a substantial enhancement in both flavonoids and catechin levels. In addition, there was a remarkable upregulation in the expression of essential enzyme-coding genes associated with the flavonoid biosynthesis pathways. Our study revealed SsMYB158 as a critical regulator of flavonoid biosynthesis in S. suberectus and laying the foundation for its molecular breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.108929DOI Listing

Publication Analysis

Top Keywords

flavonoid biosynthesis
20
spatholobus suberectus
8
full-length transcriptome
8
associated flavonoid
8
overexpression ssmyb158
8
suberectus
6
ssmyb158
5
flavonoid
5
biosynthesis
5
analysis spatholobus
4

Similar Publications

Ferroptosis is involved in the progression of sepsis-induced acute lung injury (ALI). Kaempferol is a flavonoid compound that can protect against ALI. 5-Methylcytosine (m5C) is involved in the pathogenesis of sepsis.

View Article and Find Full Text PDF

The growing demand for healthy Tartary buckwheat-based foods has sparked interest in fermentation as a processing technique to enhance food quality and bioactivity. This study investigated the impact of solid-state fermentation of black Tartary buckwheat (BTB) with Monascus purpureus and Eurotium cristatum PW-1 on its quality, biochemical properties, and hypolipidemic potential, using metabolomics, bioinformatics, network pharmacology, and invivo zebrafish models. Fermentation significantly increased total amino acids, γ-aminobutyric acid, and aromatic volatile compounds such as alcohols, esters, terpenes, and terpenoids, enhancing the flavor profile.

View Article and Find Full Text PDF

Specialized plant metabolism, particularly phenolic compound production, contributes significantly to the functioning and resilience of mountain ecosystems. Livestock grazing can influence phenolic production, with its effects varying depending on microclimatic factors and soil conditions. Despite the ecological significance of this process, the impact of livestock grazing on phenolic production in alpine plants remains insufficiently explored.

View Article and Find Full Text PDF

This comprehensive review examines the versatile applications and effects of Moringa oleifera across multiple fish species in aquaculture systems amid growing challenges of rising feed costs and antimicrobial resistance. M. oleifera, commonly called the Miracle tree, contains an exceptional nutritional profile with high protein content (22.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF