98%
921
2 minutes
20
With an aging population, the prevalence of neurological disorders is increasing, leading to a rise in lower limb movement disorders and, in turn, a growing need for rehabilitation training. Previous neuroimaging studies have shown a growing scientific interest in the study of brain mechanisms in robot-assisted lower limb rehabilitation (RALLR). This review aimed to determine differences in neural activity patterns during different RALLR tasks and the impact on neurofunctional plasticity. Sixty-five articles in the field of RALLR were selected and tested using three brain function detection technologies. Most studies have focused on changes in activity in various regions of the cerebral cortex during different lower limb rehabilitation tasks but have also increasingly focused on functional changes in other cortical and deep subcortical structures. Our analysis also revealed a neglect of certain task types. We identify and discuss future research directions that may contribute to a clear understanding of neural functional plasticity under different RALLR tasks. Impact Statement The evaluation of robot-assisted lower limb rehabilitation based on brain function detection technology can assess the neurological changes of patients in the rehabilitation process by monitoring brain activities and can also provide more accurate guidance for robot-assisted lower limb rehabilitation. By monitoring the patient's brain activity, the robot can adjust according to the real-time status of the patient to achieve more effective rehabilitation training. This has potential impact on improving the rehabilitation effect and speeding up the rehabilitation process of patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/brain.2024.0005 | DOI Listing |
Foot Ankle Int
September 2025
Department of Orthopaedic Surgery, St. Luke's University Health Network, Bethlehem, PA, USA.
Background: In response to the opioid epidemic, many surgical specialties have adopted nonopioid pain management strategies. Ultrasound (US)-guided peripheral nerve blocks (PNBs) are effective in reducing pain and opioid consumption postsurgery. Liposomal bupivacaine (LB), shown effective in shoulder surgery, was approved in November 2023 for use in US-guided lower extremity blocks.
View Article and Find Full Text PDFFoot Ankle Int
September 2025
Department of Radiology, School of Medicine, Keio University, Shinjuku-ku, Tokyo, Japan.
Background: Coronal wedge insoles are commonly prescribed to mitigate musculoskeletal disorders, yet their static-standing kinematic and kinetic effects on lower extremity joints remain insufficiently understood.
Methods: This cross-sectional experimental study included 15 healthy older adults (mean 64.9 ± 6.
Br J Dermatol
September 2025
Department of Dermatology, Sainte-Justine University Hospital Center, Montreal, QC, Canada.
CNS Neurosci Ther
September 2025
School of Information and Communication Engineering, North University of China, Taiyuan, China.
Aims: Decoding the motor intention by electroencephalography to control external devices is an effective method of helping spinal cord injury (SCI) patients to regain motor function. Still, SCI patients have much lower accuracy in the decoding of motor intentions compared to healthy individuals, which severely hampers the clinical application. However, the underlying neural mechanisms are still unknown.
View Article and Find Full Text PDFJ Biomech
September 2025
Human Movement Laboratory, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia; Translational Health Research Institute, School of Health Sciences, Western Sydney University, Campbelltown, NSW, Australia.
Hip osteoarthritis (OA) is an increasingly significant public health concern, contributing to substantial economic and societal burden worldwide. Emerging evidence suggests that running may promote cartilage health through optimal joint loading. However, it remains unclear how modifications to running posture, such as altering footstrike patterns or adjusting foot progression angles, affect hip contact forces (HCF).
View Article and Find Full Text PDF